

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD)

(Version 02 - in effect as of: 1 July 2004)

CONTENTS

- A. General description of project activity
- B. Application of a <u>baseline methodology</u>
- C. Duration of the project activity / Crediting period
- D. Application of a monitoring methodology and plan
- E. Estimation of GHG emissions by sources
- F. Environmental impacts
- G. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the <u>project activity</u>
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

SECTION A. General description of project activity

A.1 Title of the project activity:

Campo Florido Bagasse Cogeneration Project (CFBCP)

Version 2 B.

Date of the document: December 21st, 2005.

The only changes made to this version of the PDD compared to the PDD of Validation Report version Rev.1 dated 26/10/2005 referred to in the letter of approval of the DNA of Brazil are related to the recalculation of the build margin emission factor with the plant efficiencies recommended by the CDM Executive Board at its 22nd meeting.

A.2. Description of the project activity:

This project activity consists of increasing the efficiency in the bagasse (a renewable fuel source, residue from sugarcane processing) cogeneration facility, as well as increasing power capacity, at S/A USINA CORURIPE AÇÚCAR E ÁLCOOL – USINA CAMPO FLORIDO (Campo Florido), a Brazilian sugar mill. With the implementation of this project, the mill is able to sell electricity to the national grid, avoiding the dispatch of same amount of energy produced by fossil-fuelled thermal plants to that grid. By that, the initiative avoids CO_2 emissions, also contributing to the regional and national sustainable development.

By investing to increase in steam efficiency in the sugar and alcohol production and increase in the efficiency of burning the bagasse (more efficient boilers), Campo Florido generates surplus steam and uses it exclusively for electricity production (through turbo-generators).

The sponsors of the CFBCP are convinced that bagasse cogeneration is a sustainable source of energy that brings not only advantages for mitigating global warming, but also creates a sustainable competitive advantage for the agricultural production in the sugarcane industry in Brazil. Using the available natural resources in a more efficient way, the Campo Florido project activity helps to enhance the consumption of renewable energy. Besides that, it is used to demonstrate the viability of electricity generation as a side-business source of revenue for the sugar industry. It is worthy to highlight that out of approximately 320 sugar mills in Brazil, the great majority produces energy for on-site use only, and not for grid supply, which is mainly due to the low-efficiency of the cogeneration equipment installed on those sugar mills.

Furthermore, bagasse cogeneration also plays an important role on the country's economic development, as Brazil's sugarcane-based industry provides for approximately 1 million jobs and represents one of the major agribusiness products within the trade balance of the country. The Brazilian heavy industry has developed the technology to supply the sugarcane industry with equipments to provide expansion for the cogeneration, therefore such heavy industry development also helps the country to create jobs and achieve the sustainable development.

Bagasse cogeneration is important for the energy strategy of the country. Cogeneration is an alternative that allows postponing the installation and/or dispatch of electricity produced by fossil-fuelled generation utilities. The sale of the CER generated by the project will boost the attractiveness of bagasse

CDM – Executive Board

page 3

cogeneration projects, helping to increase the production of this energy and decrease dependency on fossil fuel.

Campo Florido also believes that sustainable development will be achieved not only by the implementation of a renewable energy production facility, but also by carrying out activities which corresponds to the company social and environmental responsibilities, as described below:

Social Contribution

Usina Coruripe, in its branch Campo Florido, employs nowadays about 480 people directly and about 3.500 indirectly. To promote the development of the area where the facility is located, Coruripe outsource all the sugarcane plantation. The company also invests in assistance projects, security and childlike education, besides donations to municipal entities that work for childlike work eradication.

Enforcing its resources into projects that result on the welfare of its employees and of people from the community has always been priority to Coruripe.

At Campo Florido, several actions take place, like financial support to the Center of Imagination "Celeiro I" for Scholar Reinforce and Citizenship Precepts; to the day care center "Dona Maria Alfreda", which receives resources obtained from the selective waste collection made at the sugar-mill; the project "Typing with Coruripe", that introduces lacking children to the computers' world and have as leaders employees in a voluntary work. Coruripe makes also partnerships that benefit the children under the Protector Council and the Safety Council of the city.

Campo Florido, together with the non-governmental organization "Florescer", supports the soccer school of the Athletic Association "Campo Florindense", in which 15 children from 08 to 12 years old train their favorite sport. In March 2003, the mill has donated uniforms and soccer shoes to the athletes. This work has the endorsement of the Municipal Council for Child and Adolescent and the Tutelary Council of Campo Florido. To get allowed to take part of the official games assiduous frequency to school and trainings is required.

Currently, the firm maintains a modern and ample restaurant that serves, daily, food for all its employees from both the industrial and the agricultural sector. Through that, further on having high quality food, the employees receive a balanced and full of nutrients food.

With the purpose of keeping the health and welfare of its laborers, Campo Florido keeps a modern health care center which offers medical-odontological attendance extensive to the future employees. Under the Human Resources Sector, the medical department has into its team qualified professionals that periodically offer routine exams to its employees.

The company has continuously offered a series of trainings and specializations with the purpose to adequate the laborers to the new worldwide economical model. Then, industry, field and office keep in contact with the most forward knowledge, through courses and lectures ministered by qualified professionals.

CDM – Executive Board

page 4

Environmental Contribution

Saving the environment has always been a target for Campo Florido. Follow bellow a list of environmental actions developed by Campo Florido:

- Mechanism development of industrial water consume rationalization (closed circuit);
- Effluents application vinasse as organic manure;
- Residues recycle project;
- Recycling project with the community ("Reciclando com a Coruripe" Recycling with Coruripe), changing the recycled material for a sapling tree;
- Boiler gases washing, controlling the residues emissions;
- Degraded area recomposition together with cane suppliers;
- Water discard reutilization with vinasse incorporation;
- Decantation system in landfill and ash washing pools with residues incorporation at vinasse application;
- Solids waste utilization (boilers ash and filter pie) as organic manure for cane suppliers.

A.3. **Project participants:**

Name of Party involved (*) ((host) indicates a host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)
Brazil (host)	S/A Usina Coruripe Açúcar e Álcool – Usina Campo Florido (Brazilian private entity)	No
	Econergy Brasil Ltda. (Brazilian private entity)	

^(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its approval. At the time of requesting registration, the approval by the Party(ies) involved is required.

A.4. Technical description of the <u>project activity</u>:

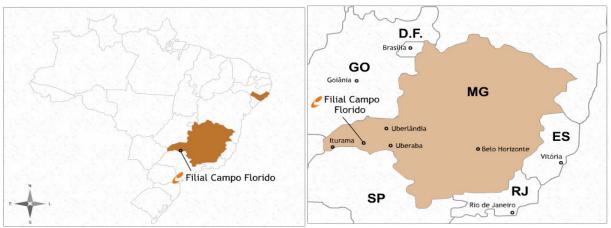
A.4.1.	Location	of	the	<u>proje</u>	<u>:t a</u>	<u>ctivity:</u>
--------	----------	----	-----	--------------	-------------	-----------------

A.4.1.1. <u>Host Party</u> (ies):

Brazil

A.4.1.2. Region/State/Province etc.:

Minas Gerais



A.4.1.3. City/Town/Community etc:

Campo Florido

A.4.1.4. Detail of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

S/A Usina Coruripe Açúcar e Álcool – Usina Campo Florido (Campo Florido Mill) is located at km 42 of Cruzeiro do Sul Highway, inside of Campo Florido city, within "Triângulo Mineiro" Region in the western of Minas Gerais State, about 538 km away from the state capital, Belo Horizonte, as can be seen in Figure 1.

Source: Elaborated by Usina Coruripe..

Figure 1: Geographical position of the city of Campo Florido.

A.4.2. Category(ies) of project activity:

Sectorial Scope: 1-Energy industries (renewable - / non-renewable sources)

A.4.3. Technology to be employed by the project activity:

The predominant technology in all parts of the world today for generating megawatt (MW) levels of electricity from biomass is the steam-Rankine cycle, which consists of direct combustion of biomass in a boiler to generate steam, which is then expanded through a turbine. Most steam cycle plants are located at industrial sites, where the waste heat from the steam turbine is recovered and used for meeting industrial process heat needs. Such combined heat and power (CHP), or cogeneration, systems provide greater levels of energy services per unit of biomass consumed than systems that generate electric power only.

The steam-Rankine cycle involves heating pressurized water, with the resulting steam expanding to drive a turbine-generator, and then condensing back to water for partial or full recycling to the boiler. A heat exchanger is used in some cases to recover heat from flue gases to preheat combustion air, and a deaerator must be used to remove dissolved oxygen from water before it enters the boiler.

Steam turbines are designed as either "backpressure" or "condensing" turbines. CHP applications typically employ backpressure turbines, wherein steam expands to a pressure that is still substantially above ambient pressure. It leaves the turbine still as a vapor and is sent to satisfy industrial heating needs, where it condenses back to water. It is then partially or fully returned to the boiler. Alternatively, if process steam demands can be met using only a portion of the available steam, a condensing-extraction steam turbine (CEST) might be used. This design includes the capability for some steam to be extracted at one or more points along the expansion path for meeting process needs (Figure 2). Steam that is not extracted continues to expand to sub-atmospheric pressures, thereby increasing the amount of electricity generated per unit of steam compared to the backpressure turbine. The non-extracted steam is converted back to liquid water in a condenser that utilizes ambient air and/or a cold water source as the coolant¹.

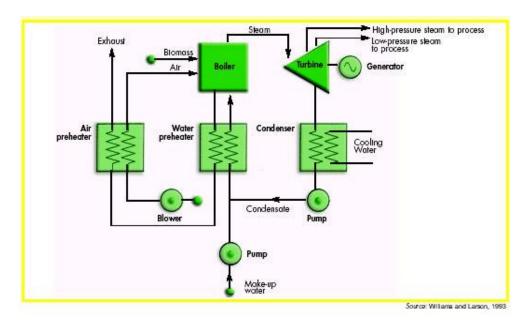


Figure 2: Schematic diagram of a biomass-fired steam-Rankine cycle for cogeneration using a condensingextraction steam turbine

The steam-Rankine cycle uses different boiler designs, depending on the scale of the facility and the characteristics of the fuel being used. The initial pressure and temperature of the steam, together with the pressure to which it is expanded, determine the amount of electricity that can be generated per kilogram of steam. In general, the higher the peak pressure and temperature of the steam, the more efficient, sophisticated, and costly the cycle is.

Using steam-Rankine cycle as the basic technology of its cogeneration system, to start its activities and for achieving an increasing amount of surplus electricity to be generated, Campo Florido implemented this project activity (CFBCP). Camplo Florido mill became operational in 05th May, 2002.

The project (CFBCP) is divided in two phases: Phase 1 (2002) and Phase 2 (2004). This project consists of installation of one new 12 MW backpressure turbo-generator and a new 45 bar boiler, producing 120 ton of steam per hour, in Phase 1 (2002), achieving a total of 7,5 MW capacity available for sale. In

_

¹ Williams & Larson, 1993 and Kartha & Larson, 2000, p.101

Phase 2 (2004), an additional 12 MW backpressure turbo-generator and a new 45 bar boiler were installed, producing 150 ton of steam per hour, aiming to achieve a total of 16 MW available for sale.

The exhibit below shows when and with which equipments CFBCP took place:

	Active							
Phase 1 (2002)	One 12 MW backpressure turbo-generator							
	One 45 bar boiler - 120 ton/h							
Phase 2 (2004)	One 12 MW backpressure turbo-generator	One 12 MW backpressure turbo-generator						
1 Hase 2 (2004)	One 45 bar boiler - 150 ton/h	One 45 bar boiler - 120 ton/h						

A.4.4. Brief explanation of how the anthropogenic emissions of anthropogenic greenhouse gas (GHGs) by sources are to be reduced by the proposed CDM project activity, including why the emission reductions would not occur in the absence of the proposed project activity, taking into account national and/or sectoral policies and circumstances:

By dispatching renewable electricity to a grid, electricity that would otherwise be produced using fossil fuel is displaced. This electricity displacement will occur at the system's margin, i.e. this CDM project will displace electricity that is produced by marginal sources (mainly fossil fueled thermal plants), which have higher electricity dispatching costs and are solicited only over the hours that baseload sources (lowcost or must-run sources) cannot supply the grid (due to higher marginal dispatching costs or fuel storage – in case of hydro sources – constraints).

Bagasse is a fibrous biomass by-product from sugarcane processing, which accounts for about 25 percent on weight of fresh cane and approximately one third of the cane's energy content. In a typical Brazilian sugarcane mill, burning bagasse for generation of process heat and power production is a practice already established. It is estimated that over 700 MW of bagasse-based power capacity is currently installed in the state of São Paulo only². The energy produced from these facilities is almost all consumed for their own purposes. Because of constraints that limited the access of independent power producers to the electric utilities market, there is no incentive for sugarcane mills to operate in a more efficient way. Lowpressure boilers, very little concern with optimal use and control of steam, crushers mechanically activated by steam, energy intensive distillation methods, are a few examples of inefficient methods applied to the sugar industry as normal routine.

The Brazilian electric sector legislation currently recognizes the role of independent power producers, which has triggered interest in improving boiler efficiency and increasing electricity generation at mills, allowing the production of enough electricity not only to satisfy sugar mills' needs but also a surplus amount for selling to the electricity market. Furthermore, the ever increasing electricity demand opens an opportunity for some bagasse cogeneration power plants in Brazil. Additionally, the feature of electricity

² São Paulo. Secretary of Energy, 2001.

CDM – Executive Board

page 8

generation from sugarcane coinciding with dry months of the year, when hydroelectric generation system - the most important electricity source in the country - is under stress, should provide considerable complementary energy and make bagasse cogeneration electricity attractive for any potential purchasers.

Nevertheless, some barriers pose a challenge for implementation of this kind of projects. In most cases, the sponsors' culture in the sugar industry is very much influenced by the commodities – sugar and ethanol – market. Therefore, they need an extra incentive to invest in electricity production due to the fact that it is a product that can never be stored in order to speculate with price. The Power Purchase Agreement (PPA) requires different negotiation skills, which is not the core of the sugar industry. For instance, when signing a long-term electricity contract, the PPA, a given sugar mill has to be confident that it will produce sufficient biomass to supply its cogeneration project. Although it seems easy to predict, the volatility of sugarcane productivity may range from 75 to 120 ton of sugarcane per hectare annually depending on the rainfall. So, the revenue from GHG emission reductions and other benefits associated with CDM certification offer a worthy financial comfort for the sugar mills, like Campo Florido, which is investing to expand its electric power generation capacity and to operate in a more rationale way under the above mentioned new electric sector circumstances.

A.4.4.1. Estimated amount of emission reductions over the chosen crediting period:

Years	Annual estimation of emission reductions in tonnes of CO ₂ e
2002	5.992
2003	6.659
2004	11.460
2005	11.779
2006	11.779
2007	11.779
2008	11.779
Total estimated reductions (tonnes of CO ₂ e)	71.227
Total Number of crediting years	7
Annual average over the crediting period of estimated reductions (tonnes of CO ₂ e)	10.175

A.4.5. Public funding of the project activity:

There is no public funding from Parties included in Annex I in this project activity.

CDM – Executive Board

page 9

SECTION B. Application of a baseline methodology

B.1. Title and reference of the <u>approved baseline methodology</u> applied to the <u>project activity</u>:

AM0015: Bagasse-based cogeneration connected to an electricity grid.

B.1.1. Justification of the choice of the methodology and why it is applicable to the project activity:

This methodology is applicable to CFBCP due to the fact that (i) the bagasse is produced and consumed in the same facility – Campo Florido; (ii) the project would never be implemented by the public sector, as well as it would not be implemented in the absence of CDM, as shown in the additionality chapter below; (iii) there is not increase on the bagasse production due to the project activity itself/ and (iv) there will be not bagasse storage for more than one year.

B.2. Description of how the methodology is applied in the context of the project activity:

The project activity follows the steps provided by the methodology taking into account the (b) Simple Adjusted OM calculation for the STEP 1, since the would be no available data for applying to the preferred option -(c) Dispatch Data Analysis OM. For STEP 2, the option 1 was chosen. The following table presents the key information and data used to determine the baseline scenario.

ID number	Data type	Value	Unit	Data Source
1. EG _y	Electricity	Obtained	MWh	Campo Florido
	supplied to	throughout		
	the grid by	project		
	the Project.	activity		
		lifetime.		
2. EF _y	CO ₂ emission	0,2677	tCO ₂ e/MWh	Calculated
	factor of the			
	Grid.			
3. EF _{OM,y}	CO_2	0,4310	tCO ₂ e/MWh	This value was calculated
	Operating			using data information from
	Margin			ONS, the Brazilian
	emission			electricity system manager.
	factor of the			
	grid.			
4. EF _{BM,y}	CO ₂ Build	0,1045	tCO ₂ e/MWh	This value was calculated
	Margin			using data information from
	emission			ONS, the Brazilian
	factor of the			electricity system manager.
	grid.			

CDM – Executive Board

page 10

10. λ _y	Fraction of	$\lambda_{2002} = 0,5053$	-	This value was calculated
	time during	$\lambda_{2003} = 0,5312$		using data information from
	which low-	$\lambda_{2004} = 0,5041$		ONS, the Brazilian
	cost/			electricity system manager.
	must-run			
	sources are on			
	the margin.			

B.3. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity:

Application of the Tool for the demonstration and assessment of additionality of CFBCP.

Step 0. Preliminary screening based on the starting date of the project activity

(a) The starting date of this project falls after 1st January 2000, which is evidenced by the Environmental License of Campo Florido issued on the 07th of May 2002, by FEAM (Fundação Estadual do Meio Ambiente) – Environmental State Foundation, a department within the State Secretary of Environment and Sustainable Development (Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável) through COPAM (Conselho Estadual de Política Ambiental) – state of Minas Gerais environmental agency.

(b) Campo Florido would not initiate the project in the absence of CDM. The mechanism was seen as a key player when overcoming technology barriers at the mill, as explained below. It has been considered since 2000, when Mr. André Marques Válio, agronomic engineer at Coruripe's headquarters in Alagoas state, participated in a workshop organized by Escola de Administração de Empresas de São Paulo (EAESP/FGV), which is the most important business school in the city of São Paulo. In this event, "CDM: the Source of Funding for Projects", presentations from Mr. José Domingos Gonzales Miguez, current member of the CDM-EB, Edwin Aalders from SGS were held, and can evidence that CDM was considered in the decision to proceed with the project activity in CFBCP.

Step 1. Identification of alternatives to the project activity consistent with current laws and regulations.

Sub-step 1a: Define alternatives to the project activity

1. There were only two possibilities to implement this project activity: one was to continue the current situation of the sugar mill, focusing only on the production of sugar and alcohol and thus investing to enhance the efficiency and increasing the scale of its core business. The other option was the project activity undertaken, which is the investment made to increase steam efficiency and production for electricity sales purposes by acquiring high-efficiency boilers and turbo-generators.

Sub-step 1b: Enforcement of applicable laws and regulations

- **2.** The alternative, which is to continue with the BAU situation before the decision of implementing this CDM project activity is consistence with the applicable laws and regulations.
- 3. Non applicable.

page 11

4. Both the project activity and the alternative scenario are in compliance with all regulations.

Step 3. Barrier analysis

Sub-step 3a: Identify barriers that would prevent the implementation of type of the proposed project activity

1. and 2. According to COELHO (1999)³, "large scale cogeneration program in sugar-alcohol sector has not yet occurred, due to several barriers, mainly economic, political and institutional", such as:

I. Technological Barriers

Technological barriers represent a very important issue for increasing bagasse cogeneration in Brazil, as – despite the fact that Rankine-cycle is a well known technology – the cogeneration units operate with low-efficiency and are not competitive comparing to other generation options. In this way there is a tricky issue about technology and economic value for such technology. Although this technology is well developed, the economic value for its application is not present for projects on the scale similar to the sugar mills in Brazil. COELHO (1999) justifies that by highlighting that the unitary costs (\$/installed MW) are significantly influenced by the scale-effect. As the bagasse cogeneration unit should have a small scale due to the high cost for transportation of the fuel (bagasse), investments are high. Therefore, as a lower cost of capital is wanted, the result is a simplified installation and lower efficiency.

COELHO (1999) also states that the great majority of the sugar mills still rely on inefficient technology, such as on 22 bar pressure boilers, even in the state of São Paulo, the most industrialized in Brazil. Moreover, when there is a necessity to change equipments it is usual not to consider purchasing higherficiency boilers due to conservativeness, lack of knowledge or even lack of interest to generate surplus steam for electricity sales purposes.

Finally, SWISHER (1997)⁴ considers it difficult to convince the local distributor that the energy to be acquired, generally generated during the harvest season, is sufficiently reliable to be accounted in the distributor's planning.

II. Institutional and Political Barriers

From the electric sector point of view, according to COELHO (1999), acquiring electricity other than hydroelectric would not be a priority, arguing that since bagasse based electricity is generated only during the harvest season, no firm energy could be offered. However, the biggest advantage of the bagasse based electricity is that it is produced during the period where hydroelectric plants face difficulties due to the low level of rainfall. As a result, COELHO (1999) suggests that there is a significant prejudice and conservativeness of the distributors when deciding whether to purchase or not bagasse based energy or not.

³ COELHO, Suani T. *Mecanismos para implementação da cogeração de eletricidade a partir de biomassa*: um modelo para o Estado de São Paulo. São Paulo: Programa interunidades de pós-graduação em energia, 1999.

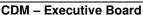
⁴ SWISHER, J. *Using area-specific cost analysis to identify low incremental-cost renewable energy options:* a case study of co-generation using bagasse in the State of São Paulo. Washington DC: Prepared for Global Environment Facility (GEF) Secretariat, 1997

CDM - Executive Board

From the sugar mill point of view, save rare exceptions, COELHO (1999) says that the great majority of sugar mills do not consider investments in cogeneration (for electricity sale) as a priority. The sector "even in the new political context, does not seem to have motivation to invest in a process that it sees with mistrust and no guarantees that the product will have a safe market in the future. Moreover, it is a fact that "the sugar mills are essentially managed by families, which hurdles the association with external financial agents" that would allow the sector to be more competitive and diversifying its investment.

From the point of view of the economic agents, the excessive level of the guarantees required to finance the projects is a common barrier to achieving a financial feasibility stage, deeply discussed in SWISHER (1997).

Other barriers have more to do with the lack of adequate commercial contractual agreements from the energy buyers (i.e. bankable long-term contracts and payment guarantee mechanisms for non-creditworthy local public-sector and private customers) and that influences directly making it much more difficult to obtain a long-term financing from a commercial bank and/or a development bank. Some other financing barriers occur simply due to prohibitively high transaction costs, which include the bureaucracy to secure the environmental license.


Since 1997, according to SWISHER (1997), the announcement of a Cogeneration Decree has been awaited, and that was supposed to have a positive influence on corporate decision-making with respect to biomass project implementation. The original Cogeneration Decree proposal, which was never approved, called for mandatory purchase by the regional utilities - "concessionárias" - from cogenerating and self-generating facilities⁵. Instead of renewable energy, the government expansion plan for electric energy, approved in February 2000 is based on fossil fuel – Natural Gas. This expansion plan called Thermoelectricity Priority Plan (PPT) became a reality right before the energy crisis. The Thermoelectricity Priority Plan beneficiaries, which were mainly natural gas thermal plants, through the Ministry of Mines and Energy (MME) Decree 3.371 from February 2000, counted on guaranteed, long term and attractive price conditions on Natural Gas supply and Energy sales, together with financing from the national development bank BNDES. And though the PPT plan is not likely to be fully implemented, the public-sector policies for renewable energy are not considered reliable enough by the executives of the private sector to support cogeneration expansion in the sugar mills. This assumption is clearly shown in the following list of rules and/or regulations toin the energy sector that have been set in the last 10 years:

- March 1993: Law 8.631 sets a tariff regulation for electric energy;
- **February 1995**: Law 8.987 establish public concession for energy;
- **July 1995**: Law 9.074 regulates concession for electric energy sector;
- **December 1996**: Law 9.427 creates National Energy Agency (ANEEL);
- August 1997: Law 9.478 sets the National Council for Energy Planning (CNPE);
- October 1997: Decree 2.335 regulates the ANEEL task;

_

⁵ Presidential Decree on the co-generation of electric energy, draft of 5 August 1997.

- December 1997: Implements ANEEL;
- May 1998: Law 9.648 establishes the Spot Market for Electric Energy (MAE) and the Operator National System (ONS);
- July 1998: Decree 2.655 regulates MAE and ONS tasks;
- February **2000**: Decree 3.371 regulates the Thermoelectricity Priority Plan (PPT);
- April 2002: Law 10.438 sets the Program for Incentive Alternative Energy (PROINFA), stating that contracts shall be signed within 24 months from its date and that there will be different economic values for the acquisition of 3.300MW of electricity capacity from renewable sources by the state owned Eletrobrás, for plants starting operations before December 30, 2006;
- **August 2002**: MP 64 is a presidential act to change the constitution in order to permit the energy sector regulation including the PROINFA;
- **December 2002**: Resolution 4.541 from ANEEL regulates the implementation of PROINFA, stating that economic values would be defined within 90 days;
- March 2003: Decree 4.644 postponed for 180 days, from its date, the economic value and operational guidelines announcement;
- **June 2003**: Decree 4.758 indefinitely postponed the date for the economic value and operational guidelines announcement and revoked the above mentioned Decree 4.644.
- November 2003: Law 10.762 of 11 November/03 revised Law 10.438 of 26 April 2002 institutes PROINFA.
- March 2004: Decree 5.025 regulates the Law 10.438 as of 26 April 2002.

For this CDM project analysis purposes, by at the time the project started there were no institutional incentives like PROINFA to be considered. Therefore, the company's decision onto signing a long-term PPA with the local distributor undoubtedly represented a significant risk that the mill was willing to take, partially thanks to the expected CDM revenue.

III. Economic and Investment Barriers

"There are several reasons for the Brazilian utilities' reluctance to offer higher prices for co-generated power. One important reason stems from their assumption that their costs are geographically uniform – i.e., that there is essentially a single value for their avoided cost in the industrial sector. If this cost value does not indicate that sufficient savings are available from buying co-generated power, and then there is little economic motivation, under either a public monopoly or a privatized competitive structure, for a utility to pay enough for co-generation to satisfy potential investors' financial criteria" ⁶ as stated by SWISHER (1997). In fact, the economic cost is the reason that Brazilian utilities do not buy cogeneration electricity energy, at least, while the energy sector regulation does not guarantee them the right to pass

⁶ Joel Swisher personal communication with Rolls Royce Power Ventures project manage. Mark Croke, August 26, 1997. Swisher J. 1997 pg. 76.

such cost through to the end user tariff. The cost of cogeneration electricity ranges from US\$ 35 to US\$ 105 per MWh, according to the Expansion Plan 2001-2010 from Brazil Government, which is described as higher than the marginal cost for electricity expansion in the system – US\$ 33/MWh⁷.

COELHO (1999) also highlights as one of the major problems of selling surplus energy to the grid as being the economic value paid to the sugar mills which not enough to remunerate the capital invested in the expansion of a cogeneration project. Furthermore, "the fee for accessing the grid does not contribute to making feasible the sale of the surplus energy to the distributors".

Summarizing, SWISHER (1997) considers that the main difficulties are found in: (a) small sizes of projects and installation costs: as the fixed costs are high and usually installations do not tend to be large, there is a huge economic barrier towards implementation of these sort of projects, as returns will be low comparing with such fixed costs. (b) availability of long-term financing: traditionally, infrastructure projects have had wide access to long-term financing, situation that has changed after the electric sector privatization. (c) lack of guarantees: besides technical guarantees, investors require commercial guarantees establishing a paradox: the objective of privatization is to foster a market based economy but banks still require governmental guarantees to ensure long-term investments in the private sector, (d) lack of local funding: lack of familiarity with project finance tools and due to the high interest rates in Brazil.

IV. Cultural Barrier

Due to the nature of the business in the sugar industry the marketing approach is narrowly focused on commodity type of transaction. Therefore, the electricity transaction based on long-term contract (Power Purchase Agreement) represents a significant breakthrough in their business model. In this case, the electricity transaction has to represent a safe investment opportunity from both economical and socialenvironmental perspective for convincing the sugar mills to invest in.

There are also questions regarding the managerial capacity of the companies that comprise the Brazilian sugarcane industry. According to WALTER (1994)⁸, they have in many cases demonstrated the will to undertake investments in new technologies, but without sufficient financial and entrepreneurial capacity to complete such projects,

Sub-step 3b: Show that the identified barriers would not prevent the implementation of at least one of the alternatives (except the proposed project activity).

The other alternative to this project activity was to keep the current situation and focus strictly in its core business which is the production of sugar and alcohol. Therefore, as the barriers mentioned above are directly related to entering into a new business (electricity sale), there is no impediment for sugar mills to maintain (or even invest in) its core business.

Step 4. Common practice analysis.

⁷ "Como se pode observar, os custos unitários da fontes alternativas de energia ainda são altos comparados ao custo marginal de expansão do sistema, hoje calculado em US\$33/MWh". IN: Brazil, Ministry of Mines and Energy, 2001, pg. 80.

⁸ WALTER, A.C.S. Viabilidade e perspectivas da co-geração e geração termelétrica no setor sucro-alcooleiro, 1994. Thesis (Doctorate). UNICAMP, Campinas.

page 15

Sub-step 4a: Analyze other activities similar to the proposed project activity

The sugar sector, historically, always exploited its biomass (bagasse) in an inefficient manner by making use of low-pressure boilers. Although they consume almost all of their bagasse for self-energy generation purposes, it is done in such a manner that no surplus electric energy is available for sale, and no sugar company has ventured in the electricity market until the recent years.

Similar project activities have been implemented by leading companies in this industry, mainly after Vale do Rosário started to implement its project that clearly served as a sector benchmark. However, these are few examples in a universe of about 320 sugar mills. Currently, the other similar project activities under implementation are, for example, Cia Energética Santa Elisa, Moema, Equipav, Nova América. All together the similar projects in the sugar industry in Brazil are restricted to approximately 10% of the sugar industry, since the other 90% are still burning their bagasse for on-site use only in the old-fashioned inefficient way. That clearly shows that just a small part of this sector is willing to invest in cogeneration projects. Moreover, the majority of the similar projects, which are currently being implemented, are carried out as CDM project activities. So far, Econergy Brasil has reported at least 26 CDM bagasse cogeneration projects in Brazil.

Sub-step 4b: Discuss any similar options that are occurring

This project activity type is not considered as a widely spread activity in Brazil as only a small portion of the existing sugar mills in the country actually produce electricity for sale purposes. Also, most of the existing similar activities are being developed as CDM project activities.

Specifically about Campo Florido mill, the corporate decision-makers of Coruripe Group saw with some restrictions the use of two 42 bar pressure boilers technology. Its costs are higher than the 21 bar pressure low-efficiency boilers technology used by the sugar and alcohol sector and also for the Group. Moreover, there are three others main aspects that the Campo Florido mill's managers concerns about.

The first one is related with operational complexity of 42 bar pressure boilers technology compared with 21 bar pressure low-efficiency boilers technology. In the second point, associated with the first one, there is a concern about operator's security, because the 42 bar pressure boilers technology require more specifics trainings and qualifications from theirs operators. The third aspect is directly connected with system operation reliability, assuring that the production process will not suffer any interruptions caused by the 42 bar pressure boilers technology operation.

For these mainly reasons, the possibility of economics resources obtainment from the carbon credits that should be provided by the CFBCP, among others benefits as environmental and social contribution, had motivated the corporate decision-makers of Coruripe Group to transpose these barriers allowing them to choose for the installation and operation of two 42 bar pressure boilers, increasing in this way the efficiency of mill's power generation capacity.

Step 5. Impact of CDM registration

The impact of registration of this CDM project activity will contribute to overcoming all the barriers described in this Tool: technological, institutional and political, economic and investment and cultural barriers by bringing more solidity to the investment itself and, therefore, fostering and supporting the

CDM – Executive Board

page 16

project owners' decision to the breakthrough decision to expand on their business model. In this way, the project activity is already engaged in a deal to sell its expected CERs.

Notwithstanding, the benefits and incentives mentioned in the text of the Tool for demonstration and assessment of additionality, published by the CDM-EB, will be experienced by the project activities such as: the project will achieve the aim of anthropogenic GHG reductions; financial benefit of the revenue obtained by selling CERs will bring more robustness to the project's financial situation; and its likely to attract new players and new technology (there are companies currently developing new type of boilers – extra-efficient – and the purchase of such equipment is to be fostered due to the CER sales revenue) and reducing the investor's risk.

B.4. Description of how the definition of the <u>project boundary</u> related to the <u>baseline</u> <u>methodology</u> selected is applied to the <u>project activity</u>:

The definition of the project boundary related to the baseline methodology is applied to the project activity in the following way:

Baseline energy grid: For CFBCP, the South-Southeast and Midwest subsystem of the Brazilian grid is considered as a boundary, since it is the system to which Campo Florido is connected and therefore receives all the bagasse-based produced electricity.

Bagasse cogeneration plant: the bagasse cogeneration plant considered as boundary comprises the whole site where the cogeneration facility is located.

B.5. Details of <u>baseline</u> information, including the date of completion of the baseline study and the name of person (s)/entity (ies) determining the <u>baseline</u>:

- 1. Date of completing the final draft of this baseline section: 21/12/2005
- 2. Name of person/entity determining the baseline

C.1.2.

ECONERGY BRASIL (Contact Information in Annex 1), which is participant in this project, is responsible for the technical services related to GHG emission reductions, and is therefore, in behalf of Campo Florido, the developer of this document, and all its contents.

SECTION C. Duration of the project activity / Crediting period C.1 Duration of the project activity: C.1.1. Starting date of the project activity: 05/05/2002

Expected operational lifetime of the project activity:

CDM - Executive Board

page 17

25y-0m.9

C.2 Choice of the <u>crediting period</u> and related information:						
C.2.1. Reney	wable crediting period					
C.2.1.1.	Starting date of the first <u>crediting period</u> :					
05/05/2002						
C.2.1.2.	Length of the first crediting period:					
7y-0m						
C.2.2. <u>Fixed</u>	crediting period:					
C.2.2.1.	Starting date:					
Not applicable						
C.2.2.2.	Length:					
Not applicable						

SECTION D. Application of a <u>monitoring methodology</u> and plan

D.1. Name and reference of <u>approved monitoring methodology</u> applied to the <u>project</u> <u>activity</u>:

Approved monitoring methodology AM0015: "Bagasse-based cogeneration connected to an electricity grid".

D.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> activity:

The monitoring methodology was designed to be applied to the Vale do Rosario CDM Project. Due to the great similarity of the project, the same methodology was chosen in order to monitor the emissions reduction of this project activity.

The methodology considers monitoring emissions reductions generated from cogeneration projects with sugarcane bagasse. The energy produced by the project could be electricity exported to a grid-connected system and/or energy used to substitute fossil fuel off-grid connected. And that is exactly the case with

⁹ Specialists from the Brazilian National Agency of Electric Power (ANEEL - *Agência Nacional de Energia Elétrica*) suggest using 25 years of lifetime for steam turbines, combustion turbines, combined cycle turbines and nuclear power plants, according to Bosi, 2000, p. 29.

CDM - Executive Board

page 18

CFBCP: the project exploits a by-product from the sugarcane milling process (bagasse) to produce and commercialize renewable electricity connected to a regional Brazilian grid. The methodology is therefore fully applicable to CFBCP.

Moreover, as this is a methodology to be used in conjunction with the approved baseline methodology AM0015 ("Bagasse-based cogeneration connected to an electricity grid"), the same applicability conditions are described and justified in item B1.1 of this document.

CDM – Executive Board

D.2. 1. Option 1: Monitoring of the emissions in the project scenario and the baseline scenario

There is no project emission to be considered in this project activity.

	D.2.1.1. Data to be collected in order to monitor emissions from the <u>project activity</u> , and how this data will be archived:									
ID number (Please use numbers to ease cross-referencing to D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c) or estimated (e)	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		

D.2.1.2. Description of formulae used to estimate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not Applicable

boundary a	D.2.1.3. Relevant data necessary for determining the <u>baseline</u> of anthropogenic emissions by sources of GHGs within the project boundary and how such data will be collected and archived:									
ID number (Please use numbers to ease cross-referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment		

CDM – Executive Board page 20

1. EG _y	Electricity supplied to the grid by the Project.	Readings of the energy metering connected to the grid and Receipt of Sales.	MWh	M	Monthly	100%	Electronic and paper	Double check by receipt of sales. Will be archived according to internal procedures, and kept for two years after the end of the crediting period.
2. EF _y	CO ₂ emission factor of the Grid.	Calculated	tCO ₂ e/MWh	C	At the validation and baseline renewal	0%	Electronic and paper	Will be archived according to internal procedures, and kept for two years after the end of the crediting period.
3. EF _{OM,y}	CO ₂ Operating Margin emission factor of the grid.	Factor calculated from ONS, the Brazilian electricity system manager.	tCO ₂ e/MWh	С	At the validation and baseline renewal	0%	Electronic and paper	Will be archived according to internal procedures, and kept for two years after the end of the crediting period.
4. EF _{BM,y}	CO ₂ Build Margin emission factor of the grid.	Factor calculated from ONS, the Brazilian electricity system manager.	tCO ₂ e/MWh	С	At the validation and baseline renewal	0%	Electronic and paper	Will be archived according to internal procedures, until 2 years after the end of the crediting period.
10. λ _y	Fraction of time during which low-cost/must-run sources are on the margin.	Factor calculated from ONS, the Brazilian electricity system manager.	index	C	At the validation and baseline renewal	0%	Electronic and paper	Will be archived according to internal procedures, and kept for two years after the end of the crediting period.

CO₂ equ.)

DM - Executive Board

D.2.1.4. Description of formulae used to estimate baseline emissions (for each gas, source, formulae/algorithm, emissions units of

 $EF_{OM,simple_adjusted,y} = (1 - \lambda_y) \frac{\sum_{i,j} F_{i,j,y}.COEF_{i,j}}{\sum_{j} GEN_{j,y}} + \lambda_y \frac{\sum_{i,k} F_{i,k,y}.COEF_{i,k}}{\sum_{k} GEN_{k,y}}$ (tCO₂e/GWh)

 $EF_{electricity} = w_{OM} EF_{OM} + w_{BM} EF_{BM} (tCO_2e/GWh)$

 $BE_{electricity,y} = EF_{electricity}$. EG_y

 $F_{i,j(or\ m),y}$ Is the amount of fuel i (in a mass or volume unit) consumed by relevant power sources j in year(s) y

j,m Refers to the power sources delivering electricity to the grid, not including low-operating cost and must-run power plants, and including imports4 from the grid $COEF_{i,j(or\ m)\ y}$ Is the CO2 emission coefficient of fuel i (tCO2 / mass or volume unit of the fuel), taking intoaccount the carbon content of the fuels used by relevant power sources j (or m) and the percent oxidation of the fuel in year(s) y, a

 $GEN_{j(or\ m),y}$ Is the electricity (MWh) delivered to the grid by source j (or m) $BE_{electricity,y}$ Are the baseline emissions due to displacement of electricity during the year y in tons of CO_2 .

 w_{OM}, w_{BM} Are the weights given to the operating margin (OM) and the build margin (BM) in the emission factor calculation.

 EG_y Is the net quantity of electricity generated in the bagasse-based cogeneration plant due to the project activity during the year y in MWh, and

 $EF_{electricity,y}$ Is the CO₂ baseline emission factor for the electricity.

D. 2.2. Option 2: Direct monitoring of emission reductions from the <u>project activity</u> (values should be consistent with those in section E).

	D.2.2.1. Data to be collected in order to monitor emissions from the <u>project activity</u> , and how this data will be archived:										
ID number (Please use numbers to ease cross- referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c), estimated (e),	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment			

D.2.2.2. Description of formulae used to calculate project emissions (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.):

Not Applicable.

D.2.3. Treatment of leakage in the monitoring plan

D.2.3.1. If applicable, please describe the data and information that will be collected in order to monitor leakage effects of the

project activity

project activ								
ID number (Please use numbers to ease cross- referencing to table D.3)	Data variable	Source of data	Data unit	Measured (m), calculated (c) or estimated (e)	Recording frequency	Proportion of data to be monitored	How will the data be archived? (electronic/ paper)	Comment
io table B.3)								

D.2.3.2. Description of formulae used to estimate <u>leakage</u> (for each gas, source, formulae/algorithm, emissions units of CO₂ equ.)

Not Applicable.

D.2.4. Description of formulae used to estimate emission reductions for the <u>project activity</u> (for each gas, source, formulae/algorithm, emissions units of CO_2 equ.)

$\begin{aligned} ER_y &= BE_{thermal, y} + BE_{electricity, y} - PE_y - L_y \\ BE_{thermal, y} &= 0 \\ PE_y &= 0 \end{aligned}$	ER_y : are the emissions reductions of the project activity during the year y in tons of CO_2 $BE_{electricity,y}$: Are the baseline emissions due to displacement of electricity during the year y in tons of CO_2
$L_y=0$ $BE_{electricity, y} = EF_{electricity} \cdot EG_y$	BE _{thermal,y} : Are the baseline emissions due to displacement of thermal energy during the year y in tons of CO ₂ PE _y : Are the project emissions during the year y in tons of CO ₂ .
	L _y : Are the leakage emissions during the year y in tons of CO ₂ .

CDM – Executive Board page 23

D.3. Quality con	D.3. Quality control (QC) and quality assurance (QA) procedures are being undertaken for data monitored					
Data	Uncertainty level of data	Explain QA/QC procedures planned for these data, or why such procedures are not necessary.				
(Indicate table and	(High/Medium/Low)					
ID number e.g. 31.;						
3.2.)						
1	Low	These data will be directly used for calculation of emission reductions. Sales record and other records are used to ensure the consistency. The electricity meter will be calibrated on an yearly basis by the electricity distributor in order to accurately monitor electricity sales.				
2	Low	Data does not need to be monitored				
3	Low	Data does not need to be monitored				
4	Low	Data does not need to be monitored				
10	Low	Data does not need to be monitored				

D.4 Please describe the operational and management structure that the project operator will implement in order to monitor emission reductions and any <u>leakage</u> effects, generated by the <u>project activity</u>

The structure for monitoring this project activity will basically consist of registering the amount of energy sold to the grid (EG_y). There are two operations that the project operators must perform in order to ensure data consistency, despite the fact that this will actually consist of the monitoring of one single variable.

- 1. The monthly readings of the calibrated meter equipment must be recorded in an electronic spreadsheet
- 2. Sales receipt must be archived for double checking the data. In case of inconsistency, these are the data to be used.

Moreover, according to the law, the metering equipment shall be periodically calibrated to comply with the regulations for independent power producers connected to the regional grid.

Thus, the procedures are made through supervisory control, the equipment calibration is made by CEMIG and all data are stored by GESTAL system software that controls the demand information.

D.5 Name of person/entity determining the <u>monitoring methodology</u>:

ECONERGY BRASIL (Contact information in Annex 1), which is a participant in this project, is the responsible for the technical services related to GHG emission reductions, and is therefore, on behalf of Campo Florido, the developer of this document, and all its contents.

CDM – Executive Board

page 24

SECTION E. Estimation of GHG emissions by sources

E.1. Estimate of GHG emissions by sources:

This project activity does not burn any additional quantity of fossil fuel due to the project implementation. Therefore, the variable PE_v, presented in the methodology, does not need to be monitored.

Thus, $PE_v = 0$

E.2. Estimated <u>leakage</u>:

Exceptionally in 2003/2004 crop, Campo Florido sold circa 17.000 tons of bagasse, which can be considered negligible when compared with the total of bagasse produced, circa 366.400 tons of bagasse. From these 17.000 tons of bagasse, 15.000 were sold to Cutrale and the other 2.000 were sold to Bascitrus, both orange juices industries. In that year, both of them used Campo Florido's bagasse in their own biomass boilers as complement for their steam production supply.

From that crop on, Campo Florido came back to use all the produced bagasse, as CFBCP Phase 2 started.

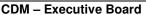
Thus, $L_v = 0$.

E.3. The sum of E.1 and E.2 representing the project activity emissions:

 $L_v + PE_v = 0$

E.4. Estimated anthropogenic emissions by sources of greenhouse gases of the baseline:

The baseline methodology considers the determination of the emissions factor for the grid to which the project activity is connected as the core data to be determined in the baseline scenario. In Brazil, there are two main grids, South-Southeast-Midwest and North-Northeast, therefore the South-Southeast-Midwest Grid is the relevant one for this project.


The method that will be chosen to calculate the Operating Margin (OM) for the electricity baseline emission factor is the option (b) *Simple Adjusted OM*, since the preferable choice (c) *Dispatch Data Analysis OM* would face the barrier of data availability in Brazil.

In order to calculate the Operating Margin, daily dispatch data from the Brazilian electricity system manager (ONS) needed to be gathered. ONS does not regularly provide such information, which implied in getting it through communicating directly with the entity.

The provided information comprised years 2002, 2003 and 2004, and is the most recent information available at this stage.

Simple Adjusted Operating Margin Emission Factor Calculation

According to the methodology, the project is to determine the Simple Adjusted OM Emission Factor $(EF_{OM, \, simple \, adjusted, \, y})$. Therefore, the following equation is to be solved:

$$EF_{OM,simple_adjusted,y} = (1 - \lambda_y) \frac{\displaystyle\sum_{i,j} F_{i,j,y}.COEF_{i,j}}{\displaystyle\sum_{GEN_{j,y}}} + \lambda_y \frac{\displaystyle\sum_{i,k} F_{i,k,y}.COEF_{i,k}}{\displaystyle\sum_{GEN_{k,y}}} \text{ (tCO}_2\text{e/GWh)}$$

It is assumed here that all the low-cost/must-run plants produce zero net emissions.

$$\frac{\sum_{i,k} F_{i,k,y}.COEF_{i,k}}{\sum_{k} GEN_{k,y}} = 0 \text{ (tCO}_2\text{e/GWh)}$$

Please refer to the methodology text or the explanations on the variables mentioned above.

The ONS data as well as the spreadsheet data with the calculation of emission factors have been provided to the validator (DOE). In the spreadsheet, the dispatch data is treated as to allow calculation of the emission factor for the most three recent years with available information, which are 2002, 2003 and 2004.

The Lambda factors were calculated in accordance with methodology requests. More detailed information is provided in Annex 3. The table below presents such factors.

Year	Lambda
2002	0,5053
2003	0,5312
2004	0,5041

Electricity generation for each year needs also to be taken into account. This information is provided in the table below.

Year	Electricity Load (MWh)
2002	275.402.896
2003	288.493.929
2004	297.879.874

Using therefore appropriate information for F_{i,i,v} and COEF_{i,i}, OM emission factors for each year can be determined, as follows.

$$EF_{OM,simple_adjusted,2002} = (1 - \lambda_{2001}) \frac{\sum_{i,j} F_{i,j,2002}.COEF_{i,j}}{\sum_{j} GEN_{j,2002}} \therefore EF_{OM,simple_adjusted,2002} = 0,4207 \text{ tCO}_2/\text{MWh}$$

$$EF_{OM,simple_adjusted,2003} = (1 - \lambda_{2003}) \frac{\sum_{i,j} F_{i,j,2003}.COEF_{i,j}}{\sum_{j} GEN_{j,2003}} \therefore EF_{OM,simple_adjusted,2003} = 0,4397 \text{ tCO}_2/\text{MWh}$$

$$EF_{OM, simple_adjusted, 2003} = (1 - \lambda_{2003}) \frac{\sum_{i,j} F_{i,j,2003}.COEF_{i,j}}{\sum_{j} GEN_{j,2003}} \therefore EF_{OM, simple_adjusted, 2003} = 0,4397 \text{ tCO}_2/\text{MWh}$$

CDM – Executive Board

page 26

$$EF_{OM, simple_adjusted, 2004} = (1 - \lambda_{2004}) \frac{\sum_{i,j} F_{i,j,2004}.COEF_{i,j}}{\sum_{j} GEN_{j,2004}} \therefore EF_{OM, simple_adjusted, 2004} = 0,4327 \text{ tCO}_2/\text{MWh}$$

Finally, to determine the baseline *ex-ante*, the mean average among the three years is calculated, finally determining the $EF_{OM,simple_adjusted}$.

$$EF_{OM,simple_adjusted} = 0,4310 \text{ tCO}_2/\text{MWh}$$

According to the methodology used, a Build Margin emission factor also needs to be determined.

$$EF_{BM,y} = \frac{\sum_{i,m} F_{i,m,y}.COEF_{i,m}}{\sum_{m} GEN_{m,y}}$$

Electricity generation in this case means 20% of total generation in the most recent year (2004), as the 5 most recent plants built generate less than such 20%. Calculating such factor one reaches:

$$EF_{BM/2004} = 0.1045 \text{ tCO}_2/\text{MWh}$$

Finally, the electricity baseline emission factor is calculated through a weighted-average formula, considering both the OM and the BM, being the weights 50% and 50% by default. That gives:

$$EF_{electricity, 2002-2004} = 0.5 * 0.4310 + 0.5 * 0.1045 = 0.2677 \text{ tCO}_2/\text{MWh}$$

It is important to note that adequate considerations on the above weights are currently under study by the Meth Panel, and there is a possibility that such weighing changes in the methodology applied here.

The baseline emissions would be then proportional to the electricity delivered to the grid throughout the project's lifetime. Baseline emissions due to displacement of electricity are calculated by multiplying the electricity baseline emissions factor ($EF_{electricity,2002-2004}$) with the electricity generation of the project activity.

$$BE_{electricity,y} = EF_{electricity,2002-2004}$$
. EG_{y}

Therefore, for the first crediting period, the baseline emissions will be calculated as follows:

$$BE_{electricity,y} = 0.2677 \text{ tCO}_2/\text{MWh} \cdot EG_y \text{ (in tCO}_2\text{e)}$$

E.5. Difference between E.4 and E.3 representing the emission reductions of the <u>project</u> activity:

The emissions reduction of this project activity is

CDM – Executive Board

page 27

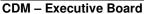
 $\mathbf{ER} = \mathbf{BE}_{\text{electricity,v}} - (\mathbf{L_v} + \mathbf{PE_v}) = 0.2677 \text{ tCO}_2/\text{MWh}$. $\mathbf{EG_v} - 0 \rightarrow \mathbf{ER} = \mathbf{0.2677} \text{ tCO}_2/\text{MWh}$. $\mathbf{EG_v} = \mathbf{0.2677} \text{ tCO}_2/\text{MWh}$.

E.6. Table providing values obtained when applying formulae above:

Year	Estimation of project activity emission reductions (tonnes of CO ₂ e)	Estimation of the baseline emission reductions (tonnes of CO ₂ e)	Estimation of leakage (tonnes of CO ₂ e)	Estimation of emission reductions (tonnes of CO ₂ e)
2002	5.992	0	0	5.992
2003	6.659	0	0	6.659
2004	11.460	0	0	11.460
2005	11.779	0	0	11.779
2006	11.779	0	0	11.779
2007	11.779	0	0	11.779
2008	11.779	0	0	11.779
Total (tonnes of CO ₂ e)	71.227	0	0	71.227

SECTION F. Environmental impacts

F.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:


The possible environmental impacts were analyzed by the State Secretary of Environment and Sustainable Development (Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável) through COPAM (Conselho Estadual de Política Ambiental) – State of Minas Gerais Environmental Agency and FEAM (Fundação Estadual do Meio Ambiente) – Environmental State Fundation. Campo Florido is in compliance with the environmental legislation and has been issued an Installation and Operation Licenses for the current installed facilities.

There will be no transboundary impacts resulting from CFBCP. All the relevant impacts occur within Brazilian borders and have been mitigated to comply with the environmental requirements for project's implementation. Therefore CFBCP will not affect by any means any country surrounding Brazil.

F.2. If environmental impacts are considered significant by the project participants or the host Party, please provide conclusions and all references to support documentation of an

environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

Phase 1:

The official Environmental License was issued by FEAM in 07th May 2002. However, Campo Florido must comply with some demands from the environmental agency in order to proceed with the operation of the project, being:

DESCRIPTION	DEADLINE	STATUS
Execute the self-monitoring program defined in Annex II of the Environmental License (boilers emissions and solid waste monitoring programs).	During the licence validity	Campo Florido is in compliance with the demands from the environmental agency.
Present the industrial activities follow-up report at the end of each crop season.	During the licence validity	Campo Florido is in compliance with the demands from the environmental agency.
Present information that shows total agrochemicals consumed by the cane suppliers, as well as show the final destination of the chemicals packages.	During the licence validity	Campo Florido is in compliance with the demands from the environmental agency.
Present the regularization of pesticides packages road transport – dangerous residues (class 1).	90 days	Campo Florido is in compliance with the demands from the environmental agency.
Present detailed information about the definition of pesticide packages temporary storage.	90 days	Campo Florido is in compliance with the demands from the environmental agency.

Phase 2:

The official Environmental License was issued in 18th May 2004. However, Campo Florido must comply with some demands from the environmental agency in order to proceed with the operation of the project, being:

DESCRIPTION	DEADLINE	STATUS
Present the Risks Analysis Study and Risks Management Program, including the Emergency Action Program, the latter following guidelines proposed by CETESB/SP.	Until 2005 crop	A report was sent to COPAM containing the requested information about the demands from this Environmental License.
Report to FEAM all facts occurred in the industrial unit that cause negative environmental impact, by the time they are noticed.	During the licence validity	A report was sent to COPAM containing the requested information about the demands from this Environmental License.
Execute the self-monitoring program defined in Annex II of the Environmental License	During the	A report was sent to COPAM containing the requested

CDM - Executive Board

page 29

(boilers emissions and solid waste monitoring programs).	licence validity	information about the demands from this Environmental License.
Present the industrial activities follow-up report at the end of each crop season.	During the licence validity	A report was sent to COPAM containing the requested information about the demands from this Environmental License.

SECTION G. Stakeholders' comments

G.1. Brief description how comments by local <u>stakeholders</u> have been invited and compiled:

Also, as a requirement of the Brazilian Interministerial Commission on Global Climate Change, the Brazilian DNA, Campo Florido invited several organizations and institutions to comment the CDM project being developed. Letters¹⁰ were sent to the following recipients:

- Prefeitura Municipal de Campo Florido MG / Municipal Administration of Campo Florido MG;
- Câmara Municipal de Campo Florido MG / Municipal Legislation Chamber of Campo Florido
 MG;
- Ministério Público de Minas Gerais / Public Ministry of Minas Gerais;
- Fórum Brasileiro de ONGs / Brazilian NGO Fórum;
- Instituto Estadual de Floresta / Forest State Institute;
- Fundação Estadual de Meio Ambiente FEAM / State's environmental agency;
- Associação Mineira de Defesa do Meio Ambiente AMDA / Minas Gerais Environmental Defence Association;
- Instituto Mineiro de Gestão de Águas IGAM / Minas Gerais Institute of Water Management;
- Secretaria Estadual do Meio Ambiente / State Secretary of Environment;
- Instituto Brasileiro de Meio Ambiente e Recursos Renováveis / Brazilian Institute of Environment and Renewable Resources:
- Sindicato Rural de Campo Florido / Campo Florido Agricultural Syndicate;
- Sindicato dos Trabalhadores Rurais de Campo Florido / Campo Florido Agricultural Workers Syndicate;

¹⁰ The copies of these invitations are available in hold of Project participants.

CDM – Executive Board

page 30

- Associação dos Fornecedores de Cana da Região de Campo Florido (Canacampo) / Cane Suppliers Association of Campo Florido Region.

G.2. Summary of the comments received:

Until the date of completing the final draft of this document, two comments were received: one from Minas Gerais Association of the Environmental Defence (*Associação Mineira de Defesa do Meio Ambiente – AMDA*) and another from Cane Suppliers Association of Campo Florido Region (*Canacampo*).

In the first case, a letter was sent by Ms. Maria Dalce Ricas (Executive Superintendent). This letter confirms the mailing reception of invitation letter for comments about the project. Also, it requested more information about the CFBCP.

In the second case, a letter was sent by Mr. Sílvio de Castro Cunha Júnior (Canacampo President). This letter contains several positive comments about CFBCP. As in the first case, more information about the project was requested.

G.3. Report on how due account was taken of any comments received:

Replying to the solicitations, Campo Florido sent more information about the project. No additional comments were received after that submission.

CDM – Executive Board

page 31

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

1.1 Project Developer Responsible for the CDM Project Activity

Organization:	Econergy Brasil Ltda.
Street/P.O.Box:	Rua Pará, 76 cj 41
Building:	Higienópolis Office Center
City:	São Paulo
State/Region:	SP
Postfix/ZIP:	01243-020
Country:	Brazil
Telephone:	+ 55 (11) 3219-0068
FAX:	+55 (11) 3219-0693
E-Mail:	-
URL:	http://www.econergy.com.br
Represented by:	
Title:	Mr.
Salutation:	
Last Name:	Diniz Junqueira
Middle Name:	Schunn
First Name:	Marcelo
Department:	-
Mobile:	+55 (11) 8263-3017
Direct FAX:	Same above
Direct tel:	+ 55 (11) 3219-0068 ext 25 and/or mobile
Personal E-Mail:	junqueira@econergy.com.br

CDM – Executive Board

1.2 Project Activity Host Company

Organization:	S/A USINA CORURIPE AÇÚCAR E ÁLCOOL – USINA CAMPO FLORIDO
Street/P.O.Box:	Estrada Cruzeiro do Sul, s/n°, km 42
Building:	Fazenda Santa Adelaide
City:	Campo Florido
State/Region:	MG
Postfix/ZIP:	38.130-000
Country:	Brazil
Telephone:	+55 (34) 3322 0040
FAX:	+55 (34) 3322 0170
E-Mail:	campoflorido@usinacoruripe.com.br
URL:	http://www.usinacoruripe.com.br
Represented by:	
Title:	Mr.
Salutation:	
Last Name:	Ramos
Middle Name:	Gomes Nogueira
First Name:	José
Department:	General Management
Mobile:	
Direct FAX:	Same above
Direct tel:	
Personal E-Mail:	rui.ramos@usinacoruripe.com.br

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

There is no Annex I public funding involved in CFBCP project activity.

Annex 3

BASELINE INFORMATION

The Brazilian electricity system has been historically divided into two subsystems: the North-Northeast (N-NE) and the South-Southeast-Midwest (S-SE-CO). This is due mainly to the historical evolution of the physical system, which was naturally developed nearby the biggest consuming centers of the country.

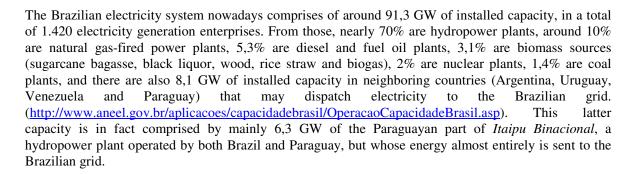
The natural evolution of both systems is increasingly showing that integration is to happen in the future. In 1998, the Brazilian government was announcing the first leg of the interconnection line between S-SE-CO and N-NE. With investments of around US\$700 million, the connection had the main purpose, in the government's view, at least, to help solve energy imbalances in the country: the S-SE-CO region could supply the N-NE in case it was necessary and vice-versa.

Nevertheless, even after the interconnection had been established, technical papers still divided the Brazilian system in two (Bosi, 2000)¹¹:

- "... where the Brazilian Electricity System is divided into three separate subsystems:
 - (i) The South/Southeast/Midwest Interconnected System;
 - (ii) The North/Northeast Interconnected System; and
 - (iii) The Isolated Systems (which represent 300 locations that are electrically isolated from the interconnected systems)"

Moreover, Bosi (2000) gives a strong argumentation in favor of having so-called *multi-project baselines*:

"For large countries with different circumstances within their borders and different power grids based in these different regions, multi-project baselines in the electricity sector may need to be disaggregated below the country-level in order to provide a credible representation of 'what would have happened otherwise'".


Finally, one has to take into account that even though the systems today are connected, the energy flow between N-NE and S-SE-CO is heavily limited by the transmission lines capacity. Therefore, only a fraction of the total energy generated in both subsystems is sent one way or another. It is natural that this fraction may change its direction and magnitude (up to the transmission line's capacity) depending on the hydrological patterns, climate and other uncontrolled factors. But it is not supposed to represent a significant amount of each subsystem's electricity demand. It has also to be considered that only in 2004 the interconnection between SE and NE was concluded, i.e., if project proponents are to be coherent with the generation database they have available as of the time of the PDD submission for validation, a situation where the electricity flow between the subsystems was even more restricted is to be considered.

¹¹ Bosi, M. An Initial View on Methodologies for Emission Baselines: Electricity Generation Case Study. International Energy Agency. Paris, 2000.

Approved methodologies AM0015 and ACM0002 ask project proponents to account for "all generating sources serving the system". In that way, when applying one of these methodologies, project proponents in Brazil should search for, and research, all power plants serving the Brazilian system.

In fact, information on such generating sources is not publicly available in Brazil. The national dispatch center, ONS – *Operador Nacional do Sistema* – argues that dispatching information is strategic to the power agents and therefore cannot be made available. On the other hand, ANEEL, the electricity agency, provides information on power capacity and other legal matters on the electricity sector, but no dispatch information can be got through this entity.

In that regard, project proponents looked for a plausible solution in order to be able to calculate the emission factor in Brazil in the most accurate way. Since real dispatch data is necessary after all, the ONS was contacted, in order to let participants know until which degree of detail information could be provided. After several months of talks, plants' daily dispatch information was made available for years 2002, 2003 and 2004.

Project proponents, discussing the feasibility of using such data, concluded it was the most proper information to be considered when determining the emission factor for the Brazilian grid. According to ANEEL, in fact, ONS centralized dispatched plants accounted for 75.547 MW of installed capacity by 31/12/2004, out of the total 98.848,5 MW installed in Brazil by the same date (http://www.aneel.gov.br/arquivos/PDF/Resumo Gráficos mai 2005.pdf), which includes capacity available in neighboring countries to export to Brazil and emergency plants, that are dispatched only during times of electricity constraints in the system. Such capacity in fact is constituted by plants with 30 MW installed capacity or above, connected to the system through 138 kV power lines, or at higher voltages. Therefore, even though the emission factor calculation is carried out without considering all generating sources serving the system, about 76,4% of the installed capacity serving Brazil is taken into account, which is a fair amount if one looks at the difficulty in getting dispatch information in Brazil. Moreover, the remaining 23,6% are plants that do not have their dispatch coordinated by ONS, since: either they operate based on power purchase agreements which are not under control of the dispatch authority; or they are located in non-interconnected systems to which ONS has no access. In that way, this portion is not likely to be affected by the CDM projects, and this is another reason for not taking them into account when determining the emission factor.

In an attempt to include all generating sources, project developers considered the option to research for available, but non-official data, to supply the existing gap. The solution found was the International Energy Agency database built when carrying out the study "Road-Testing Baselines For Greenhouse Gas Mitigation Projects in the Electric Power Sector", published in October 2002. Merging ONS data with

CDM - Executive Board

page 35

the IEA data in a spreadsheet, project proponents have been able to consider all generating sources connected to the relevant grids in order to determine the emission factor. The emission factor calculated was found more conservative when considering ONS data only, as the table below shows the build margin in both cases.

IEA/ONS Merged Data Build Margin	ONS Data Build Margin
(tCO ₂ /MWh)	(tCO ₂ /MWh)
0,205	0,1045

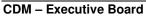
Therefore, considering all the rationale explained, project developers decided for the database considering ONS information only, as it was capable of properly addressing the issue of determining the emission factor and doing it in the most conservative way.

The fossil fueled plants efficiencies were also taken from the IEA paper. This was done considering the lack of more detailed information on such efficiencies from public, reliable and credible sources.

From the mentioned reference:

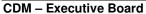
The fossil fuel conversion efficiency (%) for the thermal power plants was calculated based on the installed capacity of each plant and the electricity actually produced. For most of the fossil fuel power plants under construction, a constant value of 30% was used as an estimate for their fossil fuel conversion efficiencies. This assumption was based on data available in the literature and based on the observation of the actual situation of those kinds of plants currently in operation in Brazil. The only 2 natural gas plants in combined cycle (totaling 648 MW) were assumed to have a higher efficiency rate, i.e. 45%.

Therefore only data for plants under construction in 2002 (with operation start in 2002, 2003 and 2004) was estimated. All others efficiencies were calculated. To the best of our knowledge there was no retrofit/modernization of the older fossil-fuelled power plants in the analyzed period (2002 to 2004). For that reason project participants find the application of such numbers to be not only reasonable but the best available option.


The aggregated hourly dispatch data got from ONS was used to determine the lambda factor for each of the years with data available (2002, 2003 and 2004). The Low-cost/Must-run generation was determined as the total generation minus fossil-fuelled thermal plants generation, this one determined through daily dispatch data provided by ONS. All this information has been provided to the validators, and extensively discussed with them, in order to make all points crystal clear.

On the following pages, a summary of the analysis is provided. First, the table with the 130 plants dispatched by the ONS are provided. Then, a table with the summarized conclusions of the analysis, with the emission factor calculation displayed. Finally, the load duration curves for the S-SE-MW system are presented.

ONS Dispatched Plants



4	Subsystem*	Fuel source**	Power plant	Operation start [2, 4, 5]	Installed capacity (MW) [1]	Fossil fuel conversion efficiency (%) [2]	Carbon emission factor (tC/TJ) [3]	Fraction carbon oxidized [3]	Emission facto (tCO2/MWh)
2	S-SE-CO S-SE-CO	H H G	Jauru Gauporé Três Lagoas	Sep-2003 Sep-2003 Aug-2003	121.5 120.0 306.0	1 1 0.3	0.0 0.0 15.3	0.0% 0.0% 99.5%	0.00 0.00 0.67
4	S-SE-CO S-SE-CO	H	Funil (MG) Itiquira I	Jan-2003 Sep-2002	180.0 156.1	1	0.0	0.0%	0.00
7	S-SE-CO S-SE-CO	G G H	Araucária Canoas Piraju	Sep-2002 Sep-2002 Sep-2002	484.5 160.6 81.0	0.3 0.3	15.3 15.3 0.0	99.5% 99.5% 0.0%	0.67 0.67 0.00
9	S-SE-CO S-SE-CO	G O	Nova Piratininga PCT CGTEE	Jun-2002 Jun-2002	384.9 5.0	0.3 0.3	15.3 20.7	99.5% 99.0%	0.67
11	S-SE-CO S-SE-CO	H G	Rosal Ibirité	Jun-2002 May-2002	55.0 226.0	1 0.3	0.0 15.3	0.0% 99.5%	0.00
13 14	S-SE-CO S-SE-CO	H	Cana Brava Sta. Clara Machadinho	May-2002 Jan-2002 Jan-2002	465.9 60.0 1.140.0	1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
16	S-SE-CO S-SE-CO	G G	Juiz de Fora Macaé Merchant	Nov-2001 Nov-2001	87.0 922.6	0.28 0.24	15.3 15.3	99.5% 99.5%	0.71
18 19	S-SE-CO S-SE-CO	H G	Lajeado (ANEEL res. 402/2001) Eletrobolt	Nov-2001 Oct-2001	902.5 379.0	1 0.24	0.0 15.3	0.0% 99.5%	0.00
21	S-SE-CO S-SE-CO	H G G	Porto Estrela Cuiaba (Mario Covas) W Ariona	Sep-2001 Aug-2001 Jan-2001	112.0 529.2 194.0	0.3 0.25	0.0 15.3 15.3	0.0% 99.5% 99.5%	0.00 0.67 0.80
23 24	S-SE-CO S-SE-CO	G H	Uruguaiana S. Caxias	Jan-2000 Jan-1999	639.9 1,240.0	0.45 1	15.3 15.3	99.5% 99.5% 0.0%	0.44 0.00
25 26	S-SE-CO S-SE-CO	H H	Canoas I Canoas II	Jan-1999 Jan-1999	82.5 72.0	1	0.0	0.0%	0.00
27 28	S-SE-CO S-SE-CO	H H D	Igarapava Porto Primavera Cuiaba (Mario Covas)	Jan-1999 Jan-1999 Oct-1998	210.0 1,540.0 529.2	1 1 0.27	0.0 0.0 20.2	0.0% 0.0% 99.0%	0.00 0.00 0.97
30	S-SE-CO S-SE-CO	H	Sobragi PCH EMAE	Sep-1998 Jan-1998	60.0 26.0	1	0.0 0.0	0.0% 0.0%	0.00
32	S-SE-CO S-SE-CO	H	PCH CEEE PCH ENERSUL	Jan-1998 Jan-1998	25.0 43.0	1	0.0	0.0%	0.00
34 35	S-SE-CO S-SE-CO	H	PCH CEB PCH ESCELSA	Jan-1998 Jan-1998	15.0 62.0	1	0.0	0.0%	0.00
36 37 38	S-SE-CO S-SE-CO	H H	PCH CELESC PCH CEMAT PCH CELG	Jan-1998 Jan-1998 Jan-1998	50.0 145.0 15.0	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
39 40	S-SE-CO S-SE-CO	H	PCH CERU PCH COPEL	Jan-1998 Jan-1998	59.0 70.0	1	0.0	0.0%	0.00
41 42	S-SE-CO S-SE-CO	H H	PCH CEMIG PCH CPFL	Jan-1998 Jan-1998	84.0 55.0	1	0.0 0.0	0.0%	0.00
43 44 45	S-SE-CO S-SE-CO	H	S. Mesa PCH EPAULO	Jan-1998 Jan-1998 Jan-1997	1,275.0 26.0	1	0.0	0.0%	0.00
46 47	S-SE-CO S-SE-CO S-SE-CO	H H	Guilmam Amorim Corumbá Miranda	Jan-1997 Jan-1997 Jan-1997	140.0 375.0 408.0	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
48 49	S-SE-CO S-SE-CO	H	Noav Ponte Segredo (Gov. Ney Braga)	Jan-1994 Jan-1992	510.0 1,260.0	1	0.0	0.0%	0.00
50 51	S-SE-CO S-SE-CO	H	Taquaruçu Manso	Jan-1989 Jan-1988	554.0 210.0	1	0.0	0.0%	0.00
52 53	S-SE-CO S-SE-CO S-SE-CO	H H	D. Francisca Itá Rosana	Jan-1987 Jan-1987 Jan-1987	125.0 1,450.0 369.2	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
55 56	S-SE-CO S-SE-CO	N H	Angra T. Irmãos	Jan-1985 Jan-1985	1,874.0 807.5	1	0.0	0.0%	0.00
57 58	S-SE-CO S-SE-CO	H H	Itaipu 60 Hz Itaipu 50 Hz	Jan-1983 Jan-1983	6,300.0 5,375.0	1	0.0	0.0%	0.00
59 60	S-SE-CO S-SE-CO	H	Emborcação Nova Avanhandava	Jan-1982 Jan-1982	1,192.0 347.4	1	0.0	0.0%	0.00
61 62 63	S-SE-CO S-SE-CO	H	Gov. Bento Munhoz - GBM S.Santiago Itumbiara	Jan-1980 Jan-1980 Jan-1980	1,676.0 1,420.0 2,280.0	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00
64 65	S-SE-CO S-SE-CO	O H	Igarapé Itauba	Jan-1978 Jan-1978	131.0 512.4	0.3	20.7	99.0%	0.90
66 67	S-SE-CO S-SE-CO	H	A. Vermelha (Jose E. Moraes) S.Simão	Jan-1978 Jan-1978	1,396.2 1,710.0	1	0.0	0.0%	0.00
68 69 70	S-SE-CO S-SE-CO	H H	Capivara S.Osório Marimbondo	Jan-1977 Jan-1975 Jan-1975	640.0 1,078.0 1,440.0	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00
71 72	S-SE-CO S-SE-CO	H C	Promissão Pres. Medici	Jan-1975 Jan-1974	264.0 446.0	1 0.26	0.0 26.0	0.0% 98.0%	0.00
73 74	S-SE-CO S-SE-CO	H	Volta Grande Porto Colombia	Jan-1974 Jun-1973	380.0 320.0	1	0.0	0.0%	0.00
75 76 77	S-SE-CO S-SE-CO	H	Passo Fundo Passo Real Ilha Solteira	Jan-1973 Jan-1973 Jan-1973	220.0 158.0 3,444.0	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00
78 79	S-SE-CO S-SE-CO	H H	Mascarenhas Gov. Parigot de Souza - GPS	Jan-1973 Jan-1971	131.0 252.0	1	0.0	0.0%	0.00
80 81	S-SE-CO S-SE-CO	H	Chavantes Jaguara	Jan-1971 Jan-1971	414.0 424.0	1	0.0	0.0%	0.00
82 83 84	S-SE-CO S-SE-CO	H H	Sá Carvalho Estreito (Luiz Carlos Barreto) Ibitinga	Apr-1970 Jan-1969 Jan-1969	78.0 1,050.0 131.5	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00
85 86	S-SE-CO S-SE-CO	Н О	Jupiá Alegrete	Jan-1969 Jan-1968	1,551.2 66.0	1 0.26	0.0 20.7	0.0% 99.0%	0.00
87 88	S-SE-CO S-SE-CO	G G	Campos (Roberto Silveira) Santa Cruz (RJ)	Jan-1968 Jan-1968	30.0 766.0	0.24 0.31	15.3 15.3	99.5% 99.5%	0.80
89 90 91	S-SE-CO S-SE-CO S-SE-CO	H H	Paraibuna Limoeiro (Armando Salles de Oliviera)	Jan-1968 Jan-1967 Jan-1966	85.0 32.0 80.4	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
91 92 93	S-SE-CO S-SE-CO	C C	J.Lacerda C J.Lacerda B	Jan-1965 Jan-1965	363.0 262.0	0.25 0.21	26.0 26.0	98.0% 98.0%	1.34 1.60
94 95	S-SE-CO S-SE-CO	C H	J.Lacerda A Bariri (Alvaro de Souza Lima)	Jan-1965 Jan-1965	232.0 143.1	0.18	26.0 0.0	98.0%	1.80
96 97 98	S-SE-CO S-SE-CO	C H	Funil (RJ) Figueira	Jan-1965 Jan-1963	216.0 20.0 1,216.0	0.3 1	0.0 26.0 0.0	0.0% 98.0% 0.0%	0.00 1.12 0.00
99 00	S-SE-CO S-SE-CO	H C	Fumas Barra Bonita Charqueadas	Jan-1963 Jan-1963 Jan-1962	1,216.0 140.8 72.0	1 0.23	0.0 0.0 26.0	0.0% 0.0% 98.0%	0.00
01 02	S-SE-CO S-SE-CO	H	Jurumirim (Armando A. Laydner) Jacui	Jan-1962 Jan-1962	97.7 180.0	1	0.0	0.0%	0.00
103 104 105	S-SE-CO S-SE-CO	H H	Pereira Passos Tres Marias	Jan-1962 Jan-1962	99.1 396.0	1 1	0.0	0.0%	0.00
06 07	S-SE-CO S-SE-CO	H H	Euclides da Cunha Camargos Santa Branca	Jan-1960 Jan-1960 Jan-1960	108.8 46.0 56.1	1 1	0.0 0.0 0.0	0.0% 0.0% 0.0%	0.00 0.00 0.00
08 09	S-SE-CO S-SE-CO	H	Cachoeira Dourada Salto Grande (Lucas N. Garcez)	Jan-1959 Jan-1958	658.0 70.0	1 1	0.0	0.0%	0.00
10 11	S-SE-CO S-SE-CO	H	Salto Grande (MG) Mascarenhas de Moraes (Reixoto)	Jan-1956 Jan-1956	102.0 478.0	1	0.0	0.0%	0.00
13	S-SE-CO S-SE-CO	H C O	Itutinga S. Jerčnimo Carioba	Jan-1955 Jan-1954 Jan-1954	52.0 20.0 36.2	0.26 0.3	0.0 26.0 20.7	0.0% 98.0% 99.0%	0.00 1.29 0.90
14 15 16	S-SE-CO S-SE-CO	0 H	Piratininga Canastra	Jan-1954 Jan-1954 Jan-1953	36.2 472.0 42.5	0.3 0.3	20.7 20.7 0.0	99.0% 99.0% 0.0%	0.90 0.90
17 18	S-SE-CO S-SE-CO	H H	Nilo Peçanha Fontes Nova	Jan-1953 Jan-1940	378.4 130.3	1	0.0	0.0%	0.00
19 20	S-SE-CO S-SE-CO	H	Henry Borden Sub. Henry Borden Ext.	Jan-1926 Jan-1926	420.0 469.0	1	0.0	0.0%	0.00
121 122	S-SE-CO S-SE-CO	H	I. Pombos Jaguari	Jan-1924 Jan-1917	189.7 11.8	1	0.0	0.0%	0.00
		-CO - Southeast-Midw o		Total (MW) =	64,478.6				
11 L	A gência Nacional de E	nergia Elétrica. Banco	natural gas; H, hydro; N, nuclear; O, residus de Informações da Geração (http://www. aeffer, A.F. Simoes, H. Winkler and J.M. Luk	aneel.gov.br/, data colle	ated in november 2004	for emission in the	ottio power contro	DIES information	y Ontober con-
3]	Intergovernamental Pa	nel on Climate Change.	aeffer, A.F. Simoes, H. Winkler and J.M. Luk . Revised 1996 Guidelines for National Gre to Nacional de Operação do Sistema. <i>Acom</i>	enhouse Gas Inventori	es.			A REPORT PROPERTY	, october 2002.
			o Nacional de Operação do Sistema. Acom ntendência de Fiscalização dos Serviços de					.br/, data collected in r	november :

Summary table

Emission factors for the Brazilian South-Southeast-Midwest interconnected grid									
Baseline (including imports)	EF _{OM} [tCO2/MWh]	Load [MWh]	LCMR [GWh]	Imports [MWh]					
2002	0,8504	275.402.896	258.720	1.607.395					
2003	0,9378	288.493.929	274.649	459.586					
2004	0,8726	297.879.874	284.748	1.468.275					
	Total (2001-2003) =	861.776.699	818.118	3.535.256					
	EF OM, simple-adjusted [tCO2/MWh]	EF _{BM,2004}	Lambda						
	0,4310	0,1045	λ_{2002}						
	Alternative weights	Default weights	0,5053						
	$w_{OM} = 0.75$	$w_{OM} = 0.5$	03						
	$W_{BM} = 0.25$	$w_{BM} = 0,5$	0,53	312					
	EF CM [tCO2/MWh]	Default EF OM [tCO2/MWh]	λ_{20}	04					
	0,3494	0,2677	0,50)41					

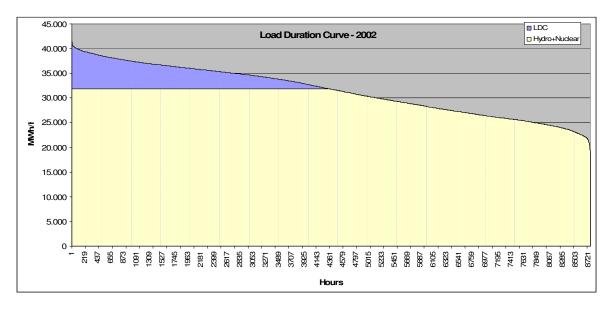


Figure 3. Load duration curve for the S-SE-MW system, 2002

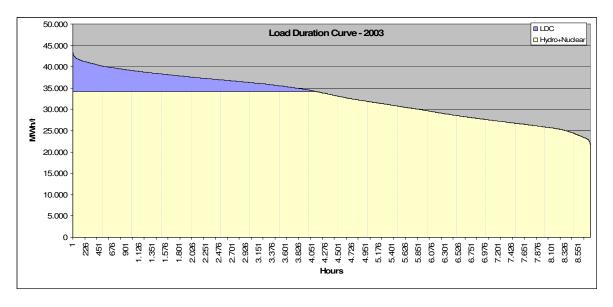


Figure 4. Load duration curve for the S-SE-MW system, 2003

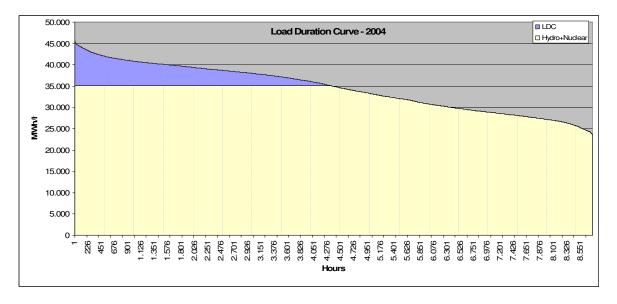


Figure 5. Load duration curve for the S-SE-MW system, 2004

CDM – Executive Board

page 39

Campo Florido Bagasse Cogeneration Project									
_		Phase 1		Phase 2					
<u> </u>	Item	2002	2003	2004	2005	2006	2007	2008	Total CERs
Reduction	Total installed capacity (MW)	12	12	24	24	24	24	24	
	Stand by capacity (MW)	0	0	0	0	0	0	0	
sior	Internal consumption (MW)	4,5	4,5	8	8	8	8	8	
Emission	Capacity available for sale (MW)	7,5	7,5	16	16	16	16	16	
ted	Operating hours (h)	5.000	5.000	5.000	5.000	5.000	5.000	5.000	
Grid-Connected	Estimated energy to be sold to the grid (MWh)*	22.384	24.876	42.809	44.000	44.000	44.000	44.000	
id-Co	Baseline emision factor (tCO2/MWh)	0,2677	0,2677	0,2677	0,2677	0,2677	0,2677	0,2677	
Ġ	Emission Reduction (tCO ₂ e)	5.992	6.659	11.460	11.779	11.779	11.779	11.779	71.227
* Electricity sold until 2004. Data for 2005 and on are estimates.									

Figure 6: Emission reductions calculation data for the first crediting period

Annex 4 MONITORING PLAN

According to the section D of this document, the only variable that will be monitored in this project activity is the quantity of energy exported to the grid. Since no leakage nor any off-grid emissions change were identified in this project activity, there will be no need to monitor the variables for these cases. The monitoring will occur as follows:

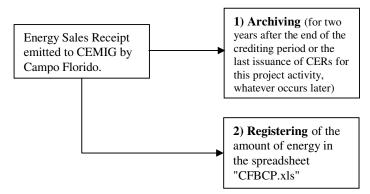


Figure 7: Monitoring procedures for Campo Florido

The quantity of energy exported to the grid will be monitored through the energy invoice emitted to CEMIG the energy distributor, by Campo Florido. The archiving will occur up to two years after the end of the crediting period or the last issuance of CERs for this project activity, whatever occurs later. The amount of energy will be registered in the spreadsheet "CFBCP.xls", which shall be the instrument for the further Verification.