

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

OBSERVAÇÃO: A revisão desta metodologia se aplica a todas as atividades de projetos que sejam elegíveis à aplicação da versão 1 existente da metodologia aprovada

Revisão da metodologia aprovada de linha de base AM0027

"Substituição de CO₂ de origem fóssil ou mineral por CO₂ de fontes renováveis na produção de compostos inorgânicos"

Fonte

Esta metodologia baseia-se na parte chamada "atividade de CO₂ renovável" da atividade do projeto "Raudi Chemical Salts", proposta pela Raudi Indústria e Comércio Ltda., com participação da Coopcana – Cooperativa Agrícola Regional de Produtores de Cana Ltda., cujo estudo da linha de base e documento de concepção do projeto foram elaborados pelo Sr. Rodrigo Marcelo Leme, da Ecoinvest, Brasil.

Mais informações sobre a proposta e sua análise pelo Conselho Executivo podem ser obtidas no caso NM0115: "CO₂, eletricidade e vapor de fontes renováveis na produção de compostos inorgânicos", no endereço http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

Esta metodologia também se reporta à última versão da "Ferramenta para demonstrar e avaliar a adicionalidade". ¹

Abordagem selecionada do parágrafo 48 das modalidade procedimentos do MDL

"Emissões de uma tecnologia que represente um curso de ação economicamente atrativo, levandose em conta as barreiras aos investimentos."

Aplicabilidade

Esta metodologia se aplica, em geral, aos processos industriais de produção/fabricação de compostos inorgânicos em que fontes fósseis ou minerais de CO₂ sejam atualmente usadas como insumo, mas que disponham de fontes renováveis de CO₂ como insumo substituto no caso da atividade do projeto.

A metodologia pode ser aplicada sob as seguintes condições:

- O CO₂ residual do processamento da biomassa já tenha sido produzido mas não aproveitado antes da atividade do projeto, de modo que nenhum desvio de CO₂ de outras aplicações se deva à atividade do projeto;
- O processamento da biomassa n\u00e3o sofra altera\u00f3\u00f3es substanciais de processo com a atividade do projeto;
- O CO₂ de fontes fósseis ou minerais usado na produção de compostos inorgânicos na linha de base seja de um processo de produção cujo único produto útil seja CO₂. O processo de produção de CO₂ a partir de fontes fósseis não gere nenhum subproduto energético;
- O CO₂ de fontes fósseis ou minerais usado na produção de compostos inorgânicos antes da atividade do projeto não seja emitido para a atmosfera com a atividade do projeto;
- Não haja mudanças substanciais (por exemplo, mudança de produto) no processo de produção de compostos inorgânicos em conseqüência da atividade do projeto;

Disponível no endereço: http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

MDL – Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

- Os níveis de produção da usina (toneladas de compostos inorgânicos produzidos por ano) possam, em geral, não ultrapassar a máxima histórica com a atividade do projeto;
- Não sejam necessárias quantidades de energia adicionais significativas para preparar o CO₂ renovável a partir do processamento da biomassa para uso na produção de compostos inorgânicos (as emissões de CO₂ correspondam a menos de 1% da redução total de emissões);
- Todo o carbono contido nos compostos inorgânicos produzidos se originem do CO₂ fornecido durante o processo de produção.

Esta metodologia de linha de base deve ser usada em conjunto com a metodologia aprovada de monitoramento AM0027 (Substituição de CO₂ de origem fóssil ou mineral por CO₂ de fontes renováveis na produção de compostos inorgânicos).

Identificação do cenário da linha de base

A metodologia determina o cenário da linha de base por meio das seguintes etapas:

Etapa I: Identificar alternativas à atividade do projeto;

Etapa II: Avaliar a adicionalidade do projeto;

<u>Etapa III</u>: Determinar o cenário mais provável (cenário da linha de base) dentre as alternativas identificadas.

Etapa I: Identificar alternativas à atividade do projeto

Os participantes do projeto devem identificar alternativas realistas e confiáveis para cada um dos componentes do projeto no país em que o composto inorgânico seja produzido e consumido. Devem-se determinar separadamente as alternativas no que diz respeito a:

- Como o CO₂ seria obtido na ausência da atividade do projeto no âmbito do MDL?
- O que aconteceria à fonte primária de energia renovável na ausência da atividade do projeto?
- O que aconteceria à linha de base e às fontes de CO₂ do projeto na ausência da atividade do projeto?

Como o CO₂ seria obtido na ausência da atividade do projeto no âmbito do MDL?

A produção de alguns compostos inorgânicos utiliza CO₂ como matéria-prima. O gás reage com outras matérias-primas dentro de um reator químico, gerando o produto final.

O CO₂ pode ser obtido de fontes *fósseis*, *minerais* ou *renováveis*.

As alternativas à atividade de CO₂ renovável (a atividade do projeto) devem ser identificadas por meio de consultas às associações técnicas e informações oficiais do país, amparadas por publicações técnicas ou por pesquisas de mercado, conforme o caso. As alternativas devem ser identificadas dentro do país em que o projeto for desenvolvido.

Não há uma única fonte padrão para esse tipo de informação, portanto as fontes de informação devem ser determinadas especificamente para cada projeto e avaliadas, durante a fase de validação, pela Entidade Operacional Designada (EOD). As fontes selecionadas devem ser reconhecidas e amplamente aceitas como fontes confiáveis no país em que for desenvolvido o projeto.

Para o CO₂, alternativas realistas e confiáveis podem abranger, entre outras:

C1: A atividade de projeto proposta (uso de fonte renovável de CO₂) não realizada como atividade

MDL – Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

de projeto no âmbito do MDL.

C2: A atividade de projeto proposta, implantada posteriormente e não realizada como uma atividade de projeto no âmbito do MDL.

C3: A atividade de projeto proposta, com o uso do mesmo tipo de CO₂ renovável mas com um consumo inferior de CO₂ (por exemplo, eficiência no uso de CO₂ que seja uma prática comum no setor industrial pertinente).

C4: O uso de CO₂ por uma determinada usina, existente ou nova, no local ou fora dele, obtido a partir de outras fontes renováveis, tais como outras fontes de biomassa.

C5: O uso de CO_2 por uma determinada usina, existente ou nova, no local ou fora dele, obtido a partir de fontes não-renováveis, tais como o CO_2 derivado do processamento termoquímico dos hidrocarbonos fósseis², o CO_2 derivado de produtos minerais³, etc. Se não fosse usado como matéria-prima na produção de compostos inorgânicos, o CO_2 *não* seria produzido e *não* seria lançado na atmosfera.

C6: O uso de CO₂ em uma determinada usina, existente ou nova, no local ou fora dele, obtido a partir de fontes não-renováveis de CO₂ residual, tais como o CO₂ residual de outros processos industriais que usam fontes fósseis ou minerais como matéria-prima, como é o caso da indústria de cimento. Se não fosse usado como matéria-prima na produção de compostos inorgânicos, o CO₂ seria produzido *de qualquer forma* e seria lançado na atmosfera.

Observe-se que as alternativas propostas nesta seção são apenas indicativas. Os proponentes do projeto podem propor outras possíveis alternativas e/ou eliminar algumas das propostas acima, com base em evidências documentadas.

Etapa II: Avaliar a adicionalidade do projeto e selecionar alternativas plausíveis à linha de base

Os participantes do projeto, depois de identificar as alternativas e construir cenários realistas e confiáveis, devem empregar a última versão aprovada da "Ferramenta para demonstrar e avaliar a adicionalidade", com dois objetivos: (i) avaliar a adicionalidade do cenário do projeto, demostrando que ele não é parte da linha de base; e (ii) identificar qual das alternativas deve ser excluída de análises posteriores para determinar a linha de base (por exemplo, alternativas em que as barreiras sejam proibitivas ou que sejam claramente pouco atrativas do ponto de vista econômico). A ferramenta deve ser empregada sem qualquer modificação para o conjunto dos cenários alternativos identificados.

Etapa III: Determinar o cenário alternativo mais provável (cenário da linha de base)

Quando restar mais de um cenário alternativo confiável e plausível, os participantes do projeto devem adotar, como o cenário da linha de base mais provável, o cenário alternativo da linha de base que resulte nas emissões mais baixas na linha de base (suposição conservadora).

² De origem fóssil pelo processamento termoquímico do gás de síntese (metano, por exemplo) ou de outros hidrocarbonos derivados da indústria petroquímica. O CO₂ comprado de fornecedores de gases industriais normalmente é obtido por meio de processamento termoquímico.

³ De origem mineral quer seja obtido a partir da calcinação do carbonato de cálcio (CaCO₃), como no processo Solvay, o processo mais comum de fabricação de bicarbonato de sódio no mundo inteiro, quer seja obtido diretamente do minério que contém o composto inorgânico.

MDL - Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Esta metodologia só se aplica a uma atividade de projeto se puder ser demonstrado, por meio das três etapas acima, que a alternativa C5 é o cenário da linha de base mais provável.

Adicionalidade

A adicionalidade da atividade do projeto deve ser demonstrada e avaliada com o uso da última versão da "Ferramenta para demonstrar e avaliar a adicionalidade", acordada pelo Conselho Executivo do MDL e disponível no web site 4 da CQNUMC para o MDL.

Limite do projeto

A fim de determinar as emissões de gases de efeito estufa da **linha de base**, os participantes do projeto devem incluir as seguintes fontes de emissão:

- Emissões de gases de efeito estufa da produção de compostos inorgânicos no local (se houver); e
- Emissões de gases de efeito estufa do uso final de compostos inorgânicos (se houver).

A fim de determinar as emissões de gases de efeito estufa da **atividade do projeto**, os participantes do projeto devem incluir as seguintes fontes de emissão:

- Remoção de CO₂ da atmosfera (se houver);
- Emissões de gases de efeito estufa do processamento de biomassa no local que gere CO₂ residual (se houver); e
- Emissões de gases de efeito estufa da produção de compostos inorgânicos no local (se houver); e
- Emissões de gases de efeito estufa do uso final de compostos inorgânicos (se houver).

A **Figura 1** apresenta uma visão geral do limite da atividade do projeto e a **Figura 2** representa o limite da linha de base.

4

⁴ No endereço: http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

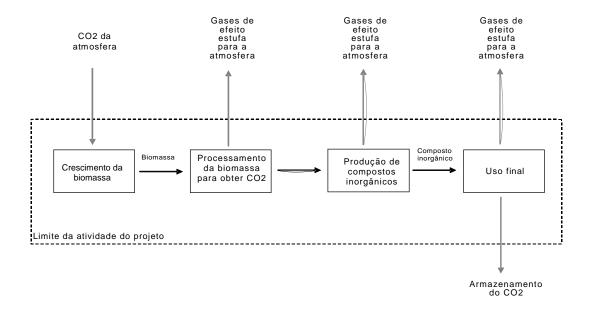


Figura 1: Limite da atividade do projeto

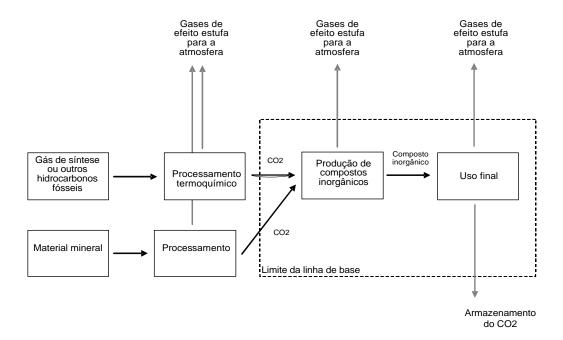


Figura 2: Limite da linha de base

MDL - Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

A Tabela 1 ilustra em detalhe quais fontes de emissões são incluídas e quais são excluídas do limite do projeto para fins de determinar as emissões tanto da linha de base quanto do projeto.

Tabela 1 – Visão geral das fontes de emissões incluídas e excluídas do limite do projeto

Fonte	Gás		Justificativa / Explicação
Processamento de	$CO_{2,}$	Excluída	Excluída para fins de simplificação. É
hidrocarbonos	$CH_{4,}$	Excluída	conservadora.
fósseis ou minerais	N_2O	Excluída	
Produção de compostos inorgânicos	CO ₂ ,	Incluída (mas anulada)	Em razão dos critérios de aplicabilidade, o processo de produção dos compostos inorgânicos não sofre alteração com a implantação da atividade do projeto, e as emissões potenciais da linha de base e do
	$CH_{4,}$	Excluída	
	N ₂ O	Excluída	
Uso final	CO_2	Incluída	O CO ₂ é lançado na atmosfera ou armazenado.
	CH ₄	Excluída	Excluída para fins de simplificação.
	N_2O	Excluída	Excluída para fins de simplificação.
Remoção de CO ₂ pelo crescimento da biomassa	CO ₂	Incluída (mas em outro lugar)	A remoção de CO ₂ durante o crescimento da biomassa ampara-se no fato de que o CO ₂ removido é tratado como neutro em relação ao clima.
Processamento da biomassa, produção de CO ₂ residual	CO _{2,}	Incluída (mas anulada)	Pode ser uma fonte importante de emissões. Contudo, em razão dos critérios de aplicabilidade, o processamento da biomassa não sofre alteração com a implantação da atividade do projeto, e as emissões da linha de
	CH ₄	Excluída	
	N ₂ O	Excluída	
Produção de compostos inorgânicos	CO ₂ ,	Incluída (mas anulada)	Em razão dos critérios de aplicabilidade, o processo de produção dos compostos inorgânicos não sofre alteração com a implantação da atividade do projeto, e as emissões potenciais da linha de base e do
	CH _{4,}	Excluída	
	N ₂ O	Excluída	
Uso final	CO_2	Incluída	O CO ₂ é lançado na atmosfera ou armazenado.
	CH ₄	Excluída	Excluída para fins de simplificação.

MDL – Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Uso final e reduções de emissões

A atividade do projeto reduz as emissões líquidas de CO₂ lançadas na atmosfera ou acarreta a remoção de C pela substituição de CO₂ de origem fóssil ou mineral por CO₂ originado do processamento da biomassa como insumo no processo de produção dos compostos inorgânicos.

No uso final, os compostos inorgânicos podem (i) dissolver-se termicamente ou (ii) não se dissociar:

- (i) Supondo-se que as moléculas dos compostos inorgânicos dissolvam-se termicamente no uso final. Portanto, se uma atividade de projeto usar CO₂ renovável em vez de CO₂ não-renovável de origem fóssil ou mineral, evitar-se-ão as emissões de CO₂ não-renovável durante o uso final do composto.
- (ii) Além disso, no caso de as moléculas dos compostos inorgânicos não se dissociarem durante o uso final, o resultado da atividade do projeto é a remoção do carbono, porque o CO₂ é removido continuamente da atmosfera pela produção de produtos químicos inorgânicos. Assim, a atividade do projeto promove a remoção permanente de CO₂ da atmosfera (ou emissões "negativas").
- É importante observar, contudo, que o objetivo principal da "atividade de CO₂ renovável" não é remover CO₂ da atmosfera. Fala-se da remoção para demonstrar que, mesmo no caso de uma parte do produto químico não se dissociar durante a fase de uso final, a atividade continuará promovendo reduções de emissões.
- O CO₂ renovável pode ser obtido do processamento da biomassa, como, por exemplo, do CO₂ residual, que seria emitido para a atmosfera, gerado na fermentação da garapa na produção de etanol.

Na Tabela 2 são apresentadas representações das duas situações, com e sem dissociação no uso final.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Tabela 2 – Balanço das emissões na "atividade de CO2 renovável"

		O composto emite CO ₂ no uso final?	O que acontece com as emissões no cenário da atividade do projeto?	O que aconteceria com as emissões no cenário da linha de base?	Balanço das emissões, a partir da diferença entre as emissões da linha de base e as do projeto
Cenário do projeto com CO ₂ renovável e	SITUAÇÃO 1 Com dissociação	Sim, as moléculas do composto se dissociam e emite-se CO ₂ para a atmosfera no uso final	Ocorrem emissões de CO ₂ que são renováveis (a emissão líquida é nula)	Ocorreriam emissões de CO de origem fóssil ou mineral (a emissão líquida seria positiva)	Ocorrem reduções de emissões porque se evitam emissões de CO ₂ não- renovável
cenário da linha de base com CO ₂ não- renovável	SITUAÇÃO 2 Sem dissociação	Não, as moléculas do composto não se dissociam e não se emite CO ₂ para a atmosfera no uso final	O CO ₂ atmosférico é removido pela molécula do produto químico (a emissão líquida é negativa)	O CO ₂ de origem fóssil ou mineral seria removido pela molécula do produto químico (a emissão líquida seria nula)	Ocorrem reduções de emissões por causa da remoção de CO ₂ atmosférico pela molécula do produto químico

Observe-se que a mudança de uma situação para a outra não afeta as reduções líquidas das emissões do projeto, uma vez que se pode supor que o uso final do produto na linha de base seria o mesmo que na atividade do projeto. Isso significa que se no cenário da atividade do projeto houver emissão de ${\rm CO_2}$ no uso final, também haverá emissão no cenário da linha de base e vice-versa, e as reduções de emissões seriam as mesmas, independentemente da situação descrita no uso final.

Emissões da linha de base (atividade de CO₂ não-renovável)

Se o cenário da linha de base C.5 for identificado (ver seção "Identificação do cenário da linha de base"), ou seja, a produção de composto inorgânico com fontes fósseis ou minerais de CO₂, então as emissões da linha de base decorrentes do uso final dos compostos inorgânicos serão calculadas como se segue.

Quando o uso final do composto inorgânico emite CO_2 para a atmosfera, as emissões do uso final dos compostos inorgânicos representam N mols de CO_2 para cada mol de composto inorgânico usado. Assim, tem-se o seguinte fator de emissão para a "atividade de CO_2 " [em tCO_2/t de composto orgânico]:

 $EF_{CA} = 44 (N/M)$

Onde:

- 44 é o peso molecular do CO₂, [g/mol].

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

- -N é o teor de carbono do composto inorgânico, ou seja, o número de átomos de carbono na molécula do composto inorgânico que se dissociaria termicamente no uso final de uma molécula do composto. N é um parâmetro fixo que depende do composto inorgânico envolvido, [não-dimensional].
- M é o peso molecular do composto inorgânico, um parâmetro fixo que depende do composto inorgânico envolvido. É calculado diretamente pela soma dos pesos atômicos dos constituintes do composto, em [g].

Baseia-se na suposição de que todo o carbono contido nos compostos inorgânicos produzidos deriva do CO₂ fornecido durante o processo de produção (critério de aplicabilidade).

O cálculo das emissões da linha de base (B) compõe-se de três partes: as emissões de gases de efeito estufa (BE), a remoção (BS) durante o consumo final e possíveis emissões relacionadas com a atividade, como por exemplo, da produção de compostos inorgânicos (BI). O cálculo é feito do seguinte modo:

$$B = BE - BR + BI \tag{1}$$

As emissões do CO2 não-renovável são

$$BE = EF_{CA} m_1 (1 - k_b)$$
 (2)

Logo,

BE = 44 (N/M)
$$m_1(1-k_b)$$
 (3)

A remoção na linha de base é

$$BS = EF_{CA} m_2 k_b \tag{4}$$

Logo,

$$BS = 44 (N/M) m_2 k_b$$
 (5)

Apresenta-se uma definição dos parâmetros e variáveis no final da seção das emissões do projeto abaixo.

Emissões do Projeto (atividade de CO2 renovável)

O cálculo das emissões do projeto (*P*) também compõe-se de três partes: as emissões de gases de efeito estufa (*PE*), a remoção (*PS*) durante o consumo final e outras possíveis emissões relacionadas com a atividade, como por exemplo, da produção de compostos inorgânicos (*PI*). O cálculo é feito assim:

$$P = PE - PS + PI$$
 (6)

As emissões do CO2 não-renovável são

$$PE = EF_{CA} m_1 (1-k_p)$$

$$(7)$$

Logo,

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

$$PE = 44 (N/M) m_1 (1-k_p)$$
 (8)

A remoção na atividade do projeto é

$$PS = EF_{CA} m_2 k_p$$
 (9)

Logo,

$$PS = 44 \text{ (N/M)} \text{ m}_2 \text{ k}_p$$
 (10)

Onde:

- m_1 é a quantidade do composto inorgânico que emite CO_2 no uso final, em [t].
- m_2 é a quantidade do composto inorgânico que $n\tilde{a}o$ emite CO_2 no uso final, em [t].
- $m = m_1 + m_2$ é a quantidade total do composto inorgânico produzido, em [t].
- k_b e k_p são fatores de correção não-dimensionais para o CO_2 renovável na linha de base e na atividade do projeto, calculados do seguinte modo:

$$k_b = m_{br} / (m_{br} + m_{bnr})$$
 e $k_p = m_{pr} / (m_{pr} + m_{pnr})$

Onde:

- m_{br}é a quantidade total de CO₂ renovável usada no cenário da linha de base.
- m_{bnr} é a quantidade total de CO₂ não-renovável usada no cenário da linha de base
- m_{pr} é a quantidade total de CO_2 renovável usada pelo projeto.
- m_{pnr} é a quantidade total de CO_2 não-renovável usada pelo projeto.

Reduções de Emissões

Os critérios de aplicabilidade (ver acima) requerem que nem o processamento da biomassa (que gera CO_2 renovável residual) nem o processo de produção (de compostos inorgânicos) sofram alterações substanciais com a atividade do projeto. Assim, pode-se supor que as emissões potenciais de gases de efeito estufa do processo de produção permanecem as mesmas na linha de base (BI) e no caso da atividade do projeto (PI):

$$BI = PI \tag{11}$$

O total das reduções de emissões, que cobre as emissões diretas de gases de efeito estufa e a remoção, pode ser escrito como:

$$ER = B - P = (BE - PE) + (PS - BS) + (BI - PI)$$
 (12)

$$ER = (BE - PE) + (PS - BS)$$
 (13)

$$ER = 44 \text{ (N/M)} (m_1 + m_2) (k_p - k_b)$$
(14)

MDL - Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

$$ER = 44 \text{ (N/M) m (k}_p - k_b)$$
 (15)

Fugas

A principal fonte potencial de fugas para esta atividade de projeto consiste em um aumento das emissões em razão do desvio de CO₂ de outros usuários para o projeto, como resultado da atividade do projeto.

Essa fonte de fugas será nula se as condições para que se aplique a metodologia forem satisfeitas:

 O CO₂ residual do processamento da biomassa já tenha sido produzido mas não aproveitado antes da atividade do projeto, de modo que nenhum desvio de CO₂ de outras aplicações se deva à atividade do projeto.

Os participantes do projeto devem apresentar evidências adequadas dessa condição durante a validação da atividade do projeto.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Revisão da metodologia aprovada de monitoramento AM0027

"Substituição de CO₂ de origem fóssil ou mineral por CO₂ de fontes renováveis na produção de compostos inorgânicos"

Fonte

Esta metodologia baseia-se na parte chamada "atividade de CO₂ renovável" da atividade do projeto "Raudi Chemical Salts", proposta pela Raudi Indústria e Comércio Ltda., com participação da Coopcana – Cooperativa Agrícola Regional de Produtores de Cana Ltda., cujo estudo da linha de base e documento de concepção do projeto foram elaborados pelo Sr. Rodrigo Marcelo Leme, da Ecoinvest, Brasil.

Mais informações sobre a proposta e sua análise pelo Conselho Executivo podem ser obtidas no caso NM0115: "CO₂, eletricidade e vapor de fontes renováveis na produção de compostos inorgânicos", no endereço http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

Esta metodologia também se reporta à última versão da "Ferramenta para demonstrar e avaliar a adicionalidade".⁵

Aplicabilidade

Esta metodologia de monitoramento deve ser usada em conjunto com a metodologia aprovada de linha de base AM0027 (Substituição de CO₂ de origem fóssil ou mineral por CO₂ de fontes renováveis na produção de compostos inorgânicos). Devem ser observadas as mesmas condições de aplicabilidade da metodologia de linha de base AM0027.

Esta metodologia aplica-se, em geral, aos processos industriais de produção/fabricação de compostos inorgânicos em que fontes fósseis ou minerais de CO₂ sejam atualmente usadas como insumo, mas que disponham de fontes renováveis de CO₂ como insumo substituto no caso da atividade do projeto.

A metodologia pode ser aplicada sob as seguintes condições:

- O CO₂ residual do processamento da biomassa já tenha sido produzido mas não aproveitado antes da atividade do projeto, de modo que nenhum desvio de CO₂ de outras aplicações se deva à atividade do projeto;
- O processamento da biomassa n\u00e3o sofra altera\u00f3\u00f3es substanciais com a atividade do projeto;
- O CO₂ de fontes fósseis ou minerais usado para a produção de compostos inorgânicos antes da atividade do projeto não seja emitido para a atmosfera com a atividade do projeto;
- Não haja mudanças substanciais (por exemplo, mudança de produto) no processo de produção de compostos inorgânicos como resultado da atividade do projeto;
- Os níveis de produção da usina (toneladas de compostos inorgânicos produzidos por ano) possam, em geral, não ultrapassar a máxima histórica com a atividade do projeto;
- Não sejam necessárias quantidades de energia adicionais significativas para preparar o CO₂ renovável a partir do processamento da biomassa para uso na produção de compostos inorgânicos (as emissões de CO₂ correspondam a menos de 1% da redução total de emissões);
- Todo o carbono contido nos compostos inorgânicos produzidos se originem do CO₂ fornecido durante o processo de produção.

⁵ Disponível no endereço http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html.

MDL - Conselho Executivo

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Metodologia de Monitoramento

Todos os dados coletados como parte do monitoramento devem ser arquivados eletronicamente e guardados por pelo menos dois anos após o término do último período de obtenção de créditos. Cem por cento dos dados devem ser monitorados caso não haja uma indicação diferente nos comentários das tabelas abaixo.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Parâmetros das emissões do projeto

A tabela abaixo ilustra os dados a serem coletados ou usados para monitorar as emissões da atividade do projeto.

Número de identificação	Variável dos dados	Fonte dos dados	Unidade dos dados	Medidos (m), calculados (c) ou estimados (e)	Freqüência	Parcela dos dados a ser monitorada	Como os dados serão arquivados? (eletronicamente/ em papel)	Comentários
1. <i>N</i>	Teor de carbono do composto inorgânico, ou seja, o número de átomos de carbono na molécula do composto inorgânico que se dissociaria termicamente no uso final do composto	Publicações técnicas, tais como manuais de engenharia química	Não- dimensional	С	Uma vez, na validação	100%	Eletronicamente e em papel	Este parâmetro é fixo e precisa ser demonstrado por meio da equação de dissociação química no uso final de cada composto produzido.
2. <i>M</i>	Peso molecular do composto inorgânico	Publicações técnicas, tais como manuais de engenharia química	g/mol	c	Uma vez, na validação	100%	Eletronicamente e em papel	Este parâmetro é fixo e calculado a partir da soma dos pesos atômicos dos constituintes do composto.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Número de identificação	Variável dos dados	Fonte dos dados		Medidos (m), calculados (c) ou estimados (e)	→	Parcela dos dados a ser monitorada	Como os dados serão arquivados? (eletronicamente/ em papel)	Comentários
3. <i>m</i>	Quantidade total de produtos químicos produzida	Publicações de empresas, documentos de vendas	t	m	Mensal	100%	Eletronicamente e em papel	Esta variável é monitorada diretamente no local. Representa a quantidade total da produção. Por exemplo, os recibos das vendas que contenham a quantidade vendida podem ser usados para fins de monitoramento.
$4. m_{pnr}$	Quantidade total de CO ₂ não- renovável usada no processo	locais com o	t	m	Mensal	100%	Eletronicamente e em papel	A quantidade de CO ₂ não-renovável usada posteriormente no projeto precisa ser monitorada diretamente no local do projeto. O meio de monitoramento depende de cada projeto específico. Por exemplo, se o CO ₂ for comprado de fornecedores externos, essa variável pode ser monitorada a partir da quantidade de CO ₂ comprada. Os recibos de compra podem ser usados com esse fim.
5. <i>m</i> _{pr}	Quantidade total de CO ₂ renovável usada no processo	locais com o	t	С	Mensal	100%	Eletronicamente e em papel	Esta variável é calculada a partir de m e m_{pnr} . O cálculo depende do produto químico produzido e da equação estequiométrica que represente sua produção. Com a equação estequiométrica e as variáveis monitoradas m e m_{pnr} , o cálculo é feito como um cálculo estequiométrico convencional.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Número de identificação	Variável dos dados	Fonte dos dados		Medidos (m), calculados (c) ou estimados (e)	Freqüência	Parcela dos dados a ser monitorada	Como os dados serão arquivados? (eletronicamente/ em papel)	Comentários
6. m_{bnr}	Quantidade total de CO ₂ não-renovável usada no processo antes do início da atividade do projeto		t	m	Mensal, durante três anos antes do início da atividade do projeto	100%	Eletronicamente e em papel	A quantidade de CO ₂ não-renovável usada posteriormente na linha de base precisa ser monitorada diretamente no local antes do início da atividade do projeto. O meio de monitoramento depende de cada projeto específico. Caso não se tenha usado CO ₂ renovável antes do início da atividade do projeto, <i>m_{bnr}</i> não precisa ser monitorada.
7. m_{br}	Quantidade total de CO ₂ renovável usada no processo antes do início da atividade do projeto	Registros no local do projeto	t	С	Mensal, durante três anos antes do início da atividade do projeto	100%	Eletronicamente e em papel	Esta variável é calculada a partir de m e m_{bnr} . O cálculo depende do produto químico produzido e da equação estequiométrica que represente sua produção. Com a equação estequiométrica e as variáveis monitoradas m e m_{bnr} , o cálculo é feito como um cálculo estequiométrico convencional. Caso não se tenha usado CO_2 renovável antes do início da atividade do projeto, m_{br} é nula.
8. Produto	Tipo de composto inorgânico produzido	Operador da usina	Descrição da substância química	m	Anual, após o início da atividade do projeto	100%	Eletronicamente e em papel	O tipo de composto inorgânico produzido é monitorado para assegurar que o produto não mude e que a metodologia permaneça aplicável.

AM0027/Versão 2.1

Escopo setorial: 5 6 de outubro de 2006

Fugas

A principal fonte potencial de fugas para esta atividade de projeto consiste em um aumento das emissões decorrente do desvio de CO₂ de outros usuários para o projeto, como resultado da atividade do projeto. Checa-se essa condição na validação do projeto.

Procedimentos de Controle da Qualidade (CQ) e Garantia da Qualidade (GQ)

Todas as medições devem usar equipamento calibrado de medição que receba manutenção periódica e cujo funcionamento seja verificado. Os procedimentos de CQ/GQ para os parâmetros a serem monitorados são ilustrados na tabela a seguir.

Dados	Nível de Incerteza dos Dados (Alto/Médio/Baixo)	Procedimentos de CQ/GQ foram planejados para esses dados?	
1., 2.	Baixo	Sim	Verificar a coerência com relação às publicações pertinentes.
3.	Baixo	Sim	Quaisquer medições diretas feitas com medidores de massa ou volume no local da usina devem ser checadas com um balanço energético anual que se baseie nas quantidades compradas e mudanças de estoque.
8.	Baixo	Sim	Tipo de composto inorgânico bem conhecido dos produtores.