

Approved baseline and monitoring methodology AM0040

"Baseline and monitoring methodology for project activities using alternative raw materials that contain carbonates in clinker manufacturing in cement kilns"

I. SOURCE AND APPLICABILITY

Source

This methodology is based on the project activity "Use of calcined ashes and fluorite for clinker production in the Cement Plant of Huichapan, Mexico", whose baseline and monitoring methodology and project design document were prepared by "MGM International".

For more information regarding the proposal and its consideration by the Executive Board please refer to case NM0163: "Use of calcined ashes and fluorite for clinker production in the Cement Plant of Huichapan, Mexico" on <u>http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html</u>

This methodology also refers to the latest version of the "Tool for the demonstration and assessment of additionality" and ACM0002: "Consolidated baseline methodology for grid-connected electricity generation from renewable sources"¹.

Selected approach from paragraph 48 of the CDM modalities and procedures

"Actual or historical emissions, as applicable"

Applicability

This methodology is applicable to cement industry projects (sectoral scope 4: Manufacturing Industry) that reduce CO_2 emissions in cement kilns by using alternative raw materials in clinker manufacturing. The *alternative raw materials for clinker manufacturing (AMC)* are defined as any mineral or synthetic substances or compounds that are obtained from mining, transformation or as by-products of other industrial processes that chemically react with commonly used raw materials for clinker production. These alternative raw materials could include, among others: waste ash from fuel combustion in thermal power plants, blast furnace slag, gypsum, anhydrite, and fluorite etc. that are not used in normal production conditions. The use of alternative raw materials in clinker manufacturing may also result in the reduction of CO_2 emissions due to the reduction in consumption of raw materials and/or consumption of energy (fuels and electricity).

This methodology is applicable under the following conditions:

- Use of alternative raw materials partially substitutes calcium and/or magnesium carbonate contents in raw material for clinker manufacturing.
- Use of alternative materials shall increase neither the capacity of clinker production nor the lifetime of equipment.
- Alternative raw materials have never been used in the clinker manufacturing facility prior to the implementation of the project activity.

¹ Please refer to: < <u>http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html</u>>

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

- The quantity of alternative materials available shall be at least 1.5 times the quantity required for meeting the demand of all existing users consuming the same alternative raw materials in the project area, i.e. the total quantity required for the project as well as other users of the alternative raw materials. Project area in this context is defined as the area within a radius of 200km around the project activity.
- There is sufficient historical information about the clinker manufacturing facility, the raw materials used, and energy performance of the kiln.

This methodology is not applicable for the following activities:

- Energy efficiency initiatives for improvements in process equipment (up-grade towers, grinding separators, burners, expert control systems, etc.).
- Fuel switching.

<u>NOTE:</u> The quantity of clinker used for manufacturing new varieties of cement following project implementation is excluded from calculation of emissions, since these new varieties do not belong to the common-practice cement category.

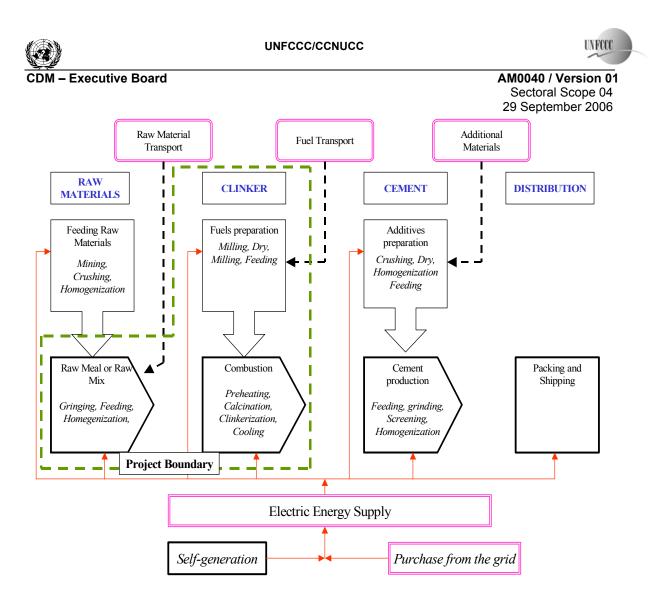
Project boundary

The project boundary includes all unit processes related to the manufacturing of clinker in the cement kiln, from reception of raw materials and fuel to the delivery of clinker in the cooler.

Project participants shall account for the following emission sources:

- ✓ Emissions from the cement kiln from fuel use:
 - Burning of fuels in the kiln (main burner and pre-calcinator).
 - Burning of fuel for preparing alternative raw materials and/or fuels, (e.g. drying of materials or fuels using external dryers), if applicable.
- ✓ Direct emissions for calcination of carbonates in limestone and clay from raw materials.
- Emissions for the potential changes in energy consumption inside the project boundary due to:
 - Consumption during crushing and adaptation of raw materials and fuels for clinker manufacturing.
 - In the operation of equipments related to the kiln (engines, compressors, fans, etc.).

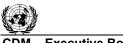
Transportation of raw materials, alternative raw materials, fuels and electricity generation sources are excluded from the project boundary. Emissions generated from transportation and electricity consumption in cement production, and potential effects due to a higher consumption of clinker when manufacturing the different kinds of cement, will be calculated and considered as leakage.


Emissions sources included in or excluded from the project boundary are shown in Table 1 below.

	Source	Gas	Included?	Explanation
Baseline	Calcination of raw materials	CO ₂	Yes	Direct emission from clinker kiln. It includes effects for By-pass and Clinker Kiln Dust productions systems.
		CH ₄	No	Emissions negligible, excluded for simplification
		N ₂ O	No	Emissions negligible, excluded for simplification
	Use of fuels (fossil, alternative fossil and	CO ₂	Yes	Direct emissions from clinker kiln.
		CH ₄	No	Emissions negligible, excluded for simplification

Table 1: Summary of gases and sources included in the project boundary

	Source	Gas	Included?	Explanation
	non-fossil)	N ₂ O	No	Emissions negligible, excluded for simplification
	Use of fuels in other processes different		Yes	Only if there exists an additional consumption of fuel during the preparation of raw materials or fuel, for example, drying of materials using burners.
	from kiln.	CH ₄	No	Emissions negligible, excluded for simplification
		N ₂ O	No	Emissions negligible, excluded for simplification
	Electricity, raw materials and fuel	CO ₂	Yes	Changes in feeding system and preparation of materials.
		CH ₄	No	Emissions negligible, excluded for simplification
	consumption.	N ₂ O	No	Emissions negligible, excluded for simplification
	Calcination of raw	CO ₂	Yes	Direct emission from clinker kiln. It includes effects for By-pass and Clinker Kiln Dust productions systems.
	materials	CH ₄	No	Emissions negligible, excluded for simplification
		N ₂ O	No	Emissions negligible, excluded for simplification
	Use of fuels (fossil,	CO ₂	Yes	Direct emission from clinker kiln.
Ŷ	alternative fossil and	CH ₄	No	Emissions negligible, excluded for simplification
Project Activity	non-fossil)	N_2O	No	Emissions negligible, excluded for simplification
	Use of fuels in other processes different	CO ₂	Yes	Only if the new material would have a fuel consumption specific component for the adaptation of material, for instance, drying.
	from kiln	CH ₄	No	Emissions negligible, excluded for simplification
		N ₂ O	No	Emissions negligible, excluded for simplification
	Electricity, raw	CO ₂	Yes	Changes in feeding system and preparation of materials.
	materials and fuel consumption.	CH_4	No	Emissions negligible, excluded for simplification
	consumption.	N ₂ O	No	Emissions negligible, excluded for simplification


The green dotted line represents the project boundary

Procedure for the identification of the most plausible baseline scenario

STEP 1. Identification of alternative scenarios to the proposed CDM project activity that are consistent with current laws and regulations

Identify all realistic and credible alternatives to the project activity that are consistent with current laws and regulations. In doing so, project participants shall consider all realistic and credible production scenarios for the relevant clinker type that are consistent with current rules and regulations, including the existing practice of clinker production, the proposed project activity not undertaken as a CDM project activity and practices in other manufacturing plants in the region² using similar input/raw materials, and facing similar economic, market and technical circumstances.

² Region in this context is defined as the geographic area around the project activity covering at least 10 cement plants.

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

I N FOO

STEP 2. Barrier analysis to eliminate alternatives to the project activity that face prohibitive barriers

Establish a complete list of barriers that would prevent alternative scenarios in the absence of the CDM, using the guidance in Step 3 (barrier test) of the latest version of the "*Tool for the demonstration and assessment of additionality*".

Since the "proposed project activity not being registered as a CDM project activity" shall be one of the considered alternatives, any barrier that may prevent the project activity to occur shall be included in that list. Show which alternatives are prevented by at least one of the barriers previously identified and eliminate those alternatives from further consideration. All alternatives shall be evaluated for a common set of barriers.

If there is only one alternative that is not prevented by any barrier then this alternative is identified as the baseline scenario. Where more than one credible and plausible alternative remains, as a conservative assumption, use the alternative baseline scenario that results in the lowest baseline emissions as the most likely baseline scenario, or conduct an investment analysis (Step 3).

STEP 3. Investment analysis (optional)

Conduct an investment analysis, consistent with the guidance in Step 2 of the latest version of the "Tool for the demonstration and assessment of additionality" for all combinations of alternatives that are remaining after the previous step. The economically most attractive combination of alternatives is deemed as the most plausible baseline scenario.

This methodology is applicable only if the most likely baseline scenario is the continuation of the production practice using current processes.

Additionality

The additionality of the project activity shall be demonstrated and assessed using the latest version of the *"Tool for the demonstration and assessment of additionality"* agreed by the CDM Executive Board, which is available on the UNFCCC website.³

Either use step 2 (investment analysis) or demonstrate the existence of "first of its kind" barrier when using step 3 (barrier test). If the project participant faces other barriers than being the "first of its kind", they should use step 2 (investment analysis) by monetized these barriers and including them in the investment analysis.

"First of its kind" barrier is defined as follows:

• The project activity is the "first of its kind": The new alternative raw materials are not currently used for clinker manufacturing in the host country or region⁴.

Project participants shall demonstrate that the identified barriers prevent the implementation of the proposed project activity and can only be overcome by registering the project as a CDM project activity.

³ Please refer to: < http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html>

⁴ Region in this context is defined as the geographic area around the project activity covering at least 10 cement plants.

Baseline emissions

The baseline emissions under this methodology shall be calculated using the CO_2 emission factor for the clinker produced in the project situation. Clinker based method is used in this methodology, as suggested in the revised IPCC guidelines for national GHG inventories of 2006, that considers the volume and composition of clinker produced plus dust leaving the kiln system. The emission factor shall be determined as follows:

$$BE_{Clinker,y} = BE_{Calcin} + BE_{FC_Calcin} + BE_{Dust} + BE_{FC_Dry} + BE_{Elec_Grid} + BE_{Elec_SG}$$
(1)

Where:

where.	
BE _{Clinker,y}	is the baseline CO_2 emission factor for clinker production for the year <i>y</i> (tCO ₂ /tonne clinker)
BE _{Calcin}	is the baseline CO_2 emissions from calcination of calcium carbonate and magnesium carbonate (t CO_2 /tonne clinker)
BE_{FC_Calcin}	is the baseline CO_2 emissions factor for combustion of fuels in clinker production (tCO ₂ /tonne clinker)
BE _{Dust}	is the baseline \overline{CO}_2 emissions factor due to discarded dust from bypass and dedusting units (CDK) system (tCO ₂ /tonne clinker)
BE_{FC_Dry}	is the baseline CO_2 emissions factor due to fuel consumption for drying of raw material or fuel preparation (tCO ₂ /tonne clinker)
BE_{Elec_Grid}	is the baseline CO_2 emissions factor for the grid electricity consumption for clinker production (t CO_2 /tonne clinker)
BE _{Elec_SG}	is the baseline CO_2 emissions for self-generated electricity used for clinker production (t CO_2 /tonne clinker)

Each of the above baseline emission components shall be calculated as follows:

(a) Baseline CO_2 emissions from Calcination of carbonates (BE_{Calcin}):

For estimation of CO_2 emissions resulting from calcination, only the proportion of calcium oxides and magnesium oxides present in the produced clinker will be considered. Measured values of CaO and MgO contents, corrected for the non-carbonate sources (for example, deducting any calcium that comes from use of calcium silicates or fly ash used as raw materials) shall be used. CO_2 emissions from calcination with correction for non-carbonate sources shall be determined as follows:

$$BE_{Calcin} = \frac{\left[0.785\left(CaO \cdot_{CLNK,BSL} - CaO_{RM,BSL}\right) + 1.092\left(MgO_{\cdot CLNK,BSL} - MgO_{\cdot RM,BSL}\right)\right]}{CLNK_{BSL}}$$
(1.1)

Where:

0.785 1.092	is the Stoichiometric emission factor for CaO (tCO ₂ /tCaO) is the Stoichiometric emission factor for MgO (tCO ₂ /tMgO)
1.092	
CaO _{RM, BSL}	is the non-carbonate CaO content (%)in the raw meal used in the baseline
	scenario (If applicable). These non-carbonate sources must to be different of
	non-carbonate materials of project activity.
CaO _{CLNK, BSL}	is the CaO content (%)in the clinker produced
MgO _{RM, BSL}	is the non-carbonate MgO content (%) in the raw meal used in the baseline

AM0040 / Version 01

	Sectoral Scope 04 29 September 2006
MgO _{CLNK, BSL} RM _{BSL} CLNK _{BSL}	scenario (If applicable). These non-carbonate sources must to be different of materials of project activity is the MgO content (%) in the clinker produced is the annual consumption of raw meal in the base year (tonne of raw meal) is the annual production of clinker in the base year (tonne of clinker)

(b) Baseline CO_2 emissions from combustion of fuels in the kiln for calcination ($BE_{FC \ Calcin}$):

In order to calculate the CO_2 emission factor per tonne of clinker produced related to fuel consumption, the "historical kiln energy consumption performance values" shall be used.

$$BE_{FC_Calcin} = \frac{SKC_{BSL} \cdot \sum (FC_{i,Calcin,y} \cdot EF_{CO2,i})}{\sum FC_{i,Calcin,y}}$$
(1.2)

Where:

SKC _{BSL}	is the Specific Kiln Calorific Consumption for the baseline scenario (GJ/tonne clinker)
FC _{i,Calcin}	is the fuel type <i>i</i> consumed for calcination in clinker production during the year <i>y</i> . (See Formula 2.2.3 below)
EF _{CO2,i}	is the CO ₂ emission factor for fossil or alternative fuel type i (tCO ₂ /GJ) used in the kiln in year y; (See Formula 2.2.3 below)

1. In order to ensure that emission reductions for fuel switching measures, if any undertaken during the project activity, are not claimed the types of fuel used during project activity are used to estimate BE_{FC Calcin}.⁵

(c) Baseline CO_2 emissions due to discarded dust from bypass and dedusting units (CDK) system (BE_{Dust}):

If there is a discarded dust from the bypass and dedusting unit (CDK), the baseline emissions due to discarded dust shall be determined as follows:

$$BE_{Dust} = \frac{\left\{ \left(BE_{Calcin} \cdot ByPass\right) + \frac{BE_{Calcin} \cdot d}{\left[BE_{Calcin}(1-d)+1\right]}CKD\right\}}{CLNK_{BSL}}$$
(1.3)

Where:

ByPass	is the annual production of Bypass dust leaving kiln system (tonnes)
CKD	is the annual production of CKD dust leaving kiln system (tonnes)
d	is the CKD calcination rate % (released CO ₂ expressed as a fraction of the total
	carbonate CO_2 in the raw meal)
CLNK _{BSL}	is the annual production of clinker in the base year (tonne of clinker)

(d) Baseline CO_2 emissions from fuel consumption for drying of raw material or fuel preparation (BE_{FC_Dry}) :

⁵ In this way, fuel switching is not precluded from the project activity but it is assumed that this fuel switching would have occurred anyway in the baseline, and thus no emission reductions are accounted for in this case.

 $BE_{FC_Dry,i} = \frac{\sum \left(FC_{Dry,i} \cdot EF_{CO2,i} \cdot NCV_{i}\right)}{CLNK_{BSL}}$

UNFCCC

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

Where:

	is the i th fossil fuel consumed for drying raw materials or fuel preparation
FC _{Dry,i}	(tonnes) in the baseline
EF _{CO2,i}	CO_2 emission factor for the i th fossil fuel type (t CO_2/GJ)
NCV _i	is the Net Calorific Value of the fuel type i (GJ/tonne of additional fuel)
CLNK _{BSL}	is the annual production of clinker in the base year (tonne of clinker)

(e) Baseline CO_2 emissions from grid electricity consumption for clinker production ($BE_{Elec Grid}$):

$$BE_{Elec_Grid} = \frac{\left(EC_{RM,Grid} + EC_{Feed,Grid} + EC_{KO,Grid}\right) \cdot EF_{CO2,Elec_Grid}}{CLNK_{BSL}}$$
(1.5)

Where: $EC_{RM,Grid}$ is the baseline grid electricity consumption for raw meal grinding (MWh) $EC_{Feed,Grid}$ is the baseline grid electricity consumption for fuel feeding (MWh) $EC_{KO,Grid}$ is the baseline grid electricity consumption for kiln operation (MWh) $EF_{CO2,Elec_Grid}$ is the CO2 emission factor of the grid (t CO2/MWh) $CLNK_{BSL}$ is the annual production of clinker in the base year (tonne of clinker)

 CO_2 emission factor of the grid ($EF_{CO2,Elec_Grid}$) shall be calculated in accordance with the procedures and guidelines provided in latest version of the approved methodology ACM0002: "Consolidated baseline methodology for grid-connected electricity generation from renewable sources".

(f) Baseline CO_2 emissions from self-generation of electricity for clinker production ($BE_{Elec SG}$):

$$BE_{Elec_SG} = \left(EC_{RM,SG} + EC_{Feed,SG} + EC_{KO,SG}\right) \cdot EF_{CO2,Elec_SG} / CLNK_{BSL}$$
(1.6)

Where:

EC _{RM,SG}	is the baseline self-generated electricity consumed for raw meal grinding (MWh)
EC _{Feed.SG}	is the baseline self-generated electricity consumed for fuel feeding (MWh)
EC _{KO,SG}	is the baseline self-generated electricity consumed for kiln operation (MWh)
EF _{CO2,Elec_SG}	is the CO ₂ emission factor of self generated electricity (t CO ₂ /MWh)
CLNK _{BSL}	is the annual production of clinker in the base year (tonne of clinker)

 CO_2 emission factor for self-generated electricity ($EF_{CO2,Elec_SG}$) shall be determined as the generationweighted average emissions per electricity unit (tCO_2/MWh) of all self-generating sources in the project boundary serving the facility.

$$EF_{CO2,Elec_SG} = \frac{\sum_{i,j} F_{i,j} \cdot COEF_{i,j}}{\sum_{j} GEN_{j}}$$
(1.6a)

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

Where: $F_{i,j}$ =Amount of fuel i (in a mass or volume unit) consumed by relevant power sources jj=On-site power sources $COEF_{i,j}$ = CO_2 emission coefficient of fuel i (tCO₂ / mass or volume unit of the fuel, estimated using equation 1.6b below GEN_j =Electricity (MWh) generated by the source j

The CO_2 emission coefficient $COEF_i$ is obtained as:

$$COEF_i = NCV_i \cdot EF_{CO_i} \cdot OXID_i$$
(1.6b)

Where:

 NCV_i = Net calorific value (energy content) per mass or volume unit of a fuel *i* $OXID_i$ = Oxidation factor of the fuel *i* (see Table 1-4 in the 2006 IPCC Guidelines, Vol. 2, page 1.25, for default values) $EF_{CO2,I}$ = CO₂ emission factor per unit of energy of the fuel *i*

Project Emissions

Similar to the baseline emissions, project activity emissions shall be expressed as CO₂ emission factor per ton of clinker produced, as follows:

$$PE_{Clinker,y} = PE_{Calcin,y} + PE_{FC_Calcin,y} + PE_{Dust} + PE_{FC_Dry,y} + PE_{Elec_Grid,y} + PE_{Elec_SG,y}$$
(2)

Where:

$$PE_{Calcin} = \frac{\left[0.785 \cdot \left(CaO_{CLNK,y} - CaO_{RM,y}\right) + 1.092 \cdot \left(MgO_{CLNK,y} - MgO_{RM,y}\right)\right]}{CLNK_{y}}$$
(2.1)

$$PE_{FC_Calcin,y} = \frac{SKC_y \cdot \sum (FC_{i,Calcin,y} \cdot EF_{CO2,i})}{\sum (FC_{i,Calcin,y})}$$
(2.2)

As this methodology is restricted to the use of new alternative material for clinker manufacturing and not to efficiency improvement measures that could take place at the same time as the project activity, the following procedure shall be used to ensure the emission reductions from project activity are claimed only for the alternative materials used. Diagram 1.1 below, gives a graphic description of comparative procedure for project emission calculation. The procedures is based on comparison of the actual kiln energy performance in the year "y" (SKC_{y,measured}) with the baseline kiln energy performance (SKC_{BSL}) and the expected value with the project activity (SKC_{ex}). SKC_{ex} shall be estimated by means of industrial samples that follow an ex-ante monitoring procedure described in Annex to this methodology. The following rule (also explained in the diagram 1.1) apply for assigning value to SKC_y in equation 2.2:

- (i) If $SKC_{y,measured} \ge SKC_{BSL}$ then $SKC_y = SKC_{y,measured}$
- (ii) If $SKC_{y,measured} < SKC_{BSL}$
 - a) If %AMC_y falls out of "%AMC optimal range", then

 $\underline{SKC}_{y} = \underline{SKC}_{BLS}$

- b) If %AMC_v falls between the "%AMC optimal range" and
 - a. SKC_{y,measured} falls between "SKC_{ex} optimal range", respectively, then

 $\underline{SKC_y} = \underline{SKC_{y,measured}}$

b. If SKC_{y,measured} is lower than any value of the interval "SKC_{ex} optimal range" SKC_y shall be calculated as follows:

 $SKC_y = \overline{SKC_j}$ ("j" runs from 1 to "y-1" years following project implementation)

This average shall exclude SKC_j values that were higher than SKC_{BSL} , i.e. allowed SKC_j values fall within the following range:

 $\overline{SKC_{ex}} < SKC_{j} \le SKC_{BSL}$

Where:

SKC _v	=	Specific Kiln Calorific Consumption for the year "y" (GJ/tonne clinker)
SKC _{y,measured}		Specific Kiln Calorific Consumption measured in the year "y" (GJ/tonne clinker)
SKC _{BLS}	=	Baseline specific Kiln Calorific Consumption (GJ/tonne clinker)
$\overline{\mathrm{SKC}_{\mathrm{ex}}}$	=	Arithmetic mean of Specific Kiln Calorific Consumption during ex-ante monitoring (GJ/tonne clinker). See Figure 1.1.
"SKC _{ex} optimal range"	=	Interval of 95% of confidence for specific kiln calorific consumption during ex- ante monitoring (GJ/tonne clinker). See Figure 1.1.
$\frac{1}{\text{SKC}_{j}}$	=	Average of specific kiln calorific consumption following project activity prior to the year "y". Label "j" is a counter that runs from 1 to "y-1". (GJ/tonne
		clinker). If $y = 1$, $SKC_j = SKC_{BLS}$
FC _{i,Calcin,y}	=	Annual fuel type i consumption for clinker production in year "y" (tonne fuel / year)
EF _{CO2} ,i	=	IPCC CO ₂ Emission factor for fossil or alternative fuel i in year "y" (tCO ₂ /GJ)
%AMC _y	=	Percentage of ACM in the raw meal production in the year "y" due to project activity implementation. The %AMC could be %SO3 or %(SO3 and CaF2) or Lime Saturation Factor (LSF) or raw meal particle size (fineness)
$\overline{\%AMC}_{ex}$	=	Arithmetic mean of %AMC in the raw meal during ex-ante monitoring. See Figure 1.1.
"%AMC _{ex} optimal range"	=	Interval of 95% of confidence for AMC content in the raw meal during ex-ante monitoring. See Figure 1.1.

In case (ii) the project proponents shall demonstrate that the higher energy performance is only due to the utilization of alternative materials. To do so, the project proponents have to compare the actual specific kiln calorific consumption (SKC_{y,measured}) for the year "y" with the results of the ex-ante monitoring at the beginning of the project implementation (SKC_{ex}) (See Diagram 1.1). This ex-ante monitoring procedure is explained in Figure 1.1. The main purpose of this ex-ante monitoring procedure is to develop an industrial testing procedure (where kiln operational variables are under total control) that

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

UNFCCC

shows the highest specific consumption reduction ("optimum") that is possible to achieve during project implementation. The optimum values will only be used as reference.

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

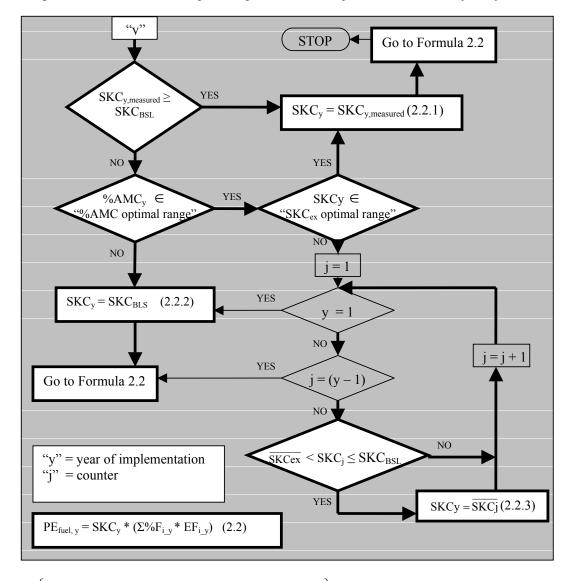


Diagram 1.1 "Flowchart of comparative procedure for Project Emissions in the year "y"

$$PE_{Dust,y} = \frac{\left\{ \left(PE_{Calcin,y} \cdot ByPass \right) + \frac{PE_{Calcin,y} \cdot d}{\left[PE_{Calcin,y} (1-d) + 1 \right]} CKD_{y} \right\}}{CLNK_{y}}$$
(2.3)

$$PE_{FC_Dry,y} = \frac{\sum (FC_{Dry_Addl,iy} \cdot EF_{CO2,i} \cdot NCV_i)}{CLNK_y}$$
(2.4)

$$PE_{Elec_Grid,y} = \frac{\left(EC_{RM,Grid,y} + EC_{Feed,Grid,y} + EC_{KO,Grid,y}\right) \cdot EF_{CO2,Elec_Grid,y}}{CLNK_{y}}$$
(2.5)

As this methodology is restricted to the use of new alternative raw materials only for clinker manufacturing and not for any reduction in electricity energy consumption for raw meal or kiln operations, the project CO_2 emissions from grid electricity consumption ($PE_{Elec_{grid},y}$) from the grid shall base on the following considerations. The value of $EC_{RM,Grid,y}$ and $EC_{KO_{Grid},y}$ shall be as follows.

$$EC_{RM,Grid,y} = \min \operatorname{imum of}(EC_{RM,Grid,y}, EC_{RM,Grid})$$

$$EC_{KO,Grid,y} = \min \operatorname{imum of}(EC_{KO,Grid,y}, EC_{KO,Grid})$$
(2.5a)

$$PE_{Elec_SG,y} = \frac{\left(EC_{RM,SG,y} + EC_{Feed,SG,y} + EC_{KO,SG,y}\right) \cdot EF_{CO2,Elec_SG}}{CLNK_{y}}$$
(2.6)

Similarly, for the formula 2.6 the value of EC_{RM,SG,y} and EC_{KO SG,y}

$$EC_{RM,SG,y} = \min \operatorname{imum of}(EC_{RM,SG,y}, EC_{RM,Grid})$$

$$EC_{KO,SG,y} = \min \operatorname{imum of}(EC_{KO,SG,y}, EC_{KO,Grid})$$
(2.6a)

- 1. In the above formulae, notations of all variables are analogous to the variables described for baseline emissions in formulae 1 and 1.1 through 1.6 respectively. The following shall be considered while estimating the project emissions using the above formulae.
- 2. Subscript 'y' used in the above formulae represents the year during which the project emissions are accounted. The values of variables with subscript y shall be based on actual measurements conducted during the year y.

Leakage

The following emission sources shall be considered as leakage under this methodology:

- Any incremental increase in transportation of clinker raw material (limestone, clay and iron ore), fuels (fossil fuels and alternative fuels) and new alternative materials (blast furnace slag, fly ash, waste ash from fuel combustion in thermal power plants, gypsum and others) from offsite locations to the project plant site. Any decrease in transport-related emissions for existing clinker raw materials and fuels change shall not be accounted.
- Emissions due to transport of alternative raw materials will be accounted as leakage.
- Emissions from grid electricity consumption for conveyor system for alternative materials.
- Electricity consumption in cement raw material grinding, preparation and feeding for blended cement manufacture, due to indirect effects of the change of clinker conditions in cement production (i.e., the clinker could be harder to grind; therefore, the cement grinding needs more electricity consumption in order to produce the same quality of common-practice blended cement).
- Changes in clinker proportion in cement manufacture due to the same effects of the potential changes in the physical and mineralogical condition of clinker, in common-practice blended cement production (i.e. the proponents could need more or less clinker in order to produce the same quality of common-practice blended cement).

Another possible leakage is due to the diversion of alternative raw materials from existing uses. The project proponents shall demonstrate that the quantities of alternative raw materials used in the project are surplus. For this purpose the project participants need to conduct a survey to demonstrate that the alternative raw materials are available in the region by at least 1.5 times the demand for the same

alternative raw materials from all existing users including the project plant. Otherwise, this methodology is not applicable.

The leakage from the project activity is expressed as

$$LE_{y} = LE_{trans,y} + LE_{Elec\ Conv,y} + LE_{ele_cto,y} + LE_{Cto,y}$$
(3)

Where:

Willer C.	
LEy	is the CO_2 emissions due to leakage during the year y (tonnes of CO_2)
LE _{trans,y}	is the CO_2 leakage due to transportation of new materials during the year y (tonnes of is the CO_2 emissions from electricity consumption for conveyor systems for
	alternative materials (tonnes of CO_2) CO_2)
$LE_{Elec_Conv,y}$	
LE _{ele_cto,y}	is the CO_2 leakage due to additional electricity consumption in blended cements
	grinding during the year y (tonnes of CO_2)
LE _{Cto,y}	is the CO_2 leakage due to lower clinker consumption in blended cements during the year <i>y</i> (tonnes of CO_2)

(a)Leakage due to transportation of new alternative raw materials (LE_{trans}):

Transport-related emissions for alternative raw materials shall be determined as follows:

$$LE_{Trans} = \frac{\left|FC_{Trans,i} \cdot \text{Dist} \cdot EF_{\text{CO2},i}\right|}{\left(Q_{Trip} \cdot 1000\right)} \cdot ALTM_{y}$$
(3.1)

Where:

FC _{Trans,i}	is the fuel consumption of the vehicle per kilometer (kg of fuel/kilometer)
Dist	is the distance between the source of fuel and the project activity plant (km)
EF _{CO2,i}	is the CO ₂ emission factor for transport fuel type i (kg CO ₂ /kg of fuel)
Q _{trip}	is the Quantity of alternative materials carried in one trip per vehicle (tonnes of alternative materials)
ALTM _y	is the annual consumption of alternative materials in raw meal in year y (tonnes)

(b) Leakage from electricity consumption for conveyors system ($LE_{ElecConv,y}$):

$$LE_{ElecConv,y} = EC_{Conv,y} \cdot EF_{CO2,Grid}$$
(3.2)

Where:

EC _{Conv,v}	is the electricity consumed for conveyors during the year y (MWh)
EF _{CO2,Grid,y}	Is the CO ₂ emission factor of the grid electricity during the year y (tCO ₂ /MWh)

EF_{CO2,Grid,y} shall be determined using ACM0002: "Consolidated baseline methodology for grid-connected electricity generation from renewable sources"

(c) Leakage calculation due to change in electricity consumption in cement grinding and production

Since changes in electricity consumption in cement grinding and production cannot be determined precisely due to the new conditions of the clinker (for instance, harder to grind), for the purpose of calculating leakage in a conservative way, only the higher consumption is considered according to:

$$LE_{Ele_cto,y} = \sum \left[EC_{Cto,y} - EC_{Cto,BSL} \right] \cdot EF_{CO2,Grid,y}$$

(3.3)

Where:

EC _{Cto,BSL}	is the baseline electricity consumption for cement grinding (MWh)
EC _{Cto,y}	is the electricity consumption for cement grinding in year "y" (MWh)
EF _{CO2,grid,y}	Is the electricity grid emission factor (tCO ₂ /MWh)

If $LE_{ele cto,y} < 0$, conservatively $LE_{ele cto}$ shall be taken as zero.

(d) Leakage calculation of a potential higher consumption of clinker in cement production

Leakage shall be quantified due to a potential higher consumption of clinker in cement production, according to the clinker factor of the project activity, as follows:

$$LE_{Cto} = \Sigma CTO_{m,y} * (P_{blend,y} - B_{blend}) * PE_{CLINKER,y}$$
(3.4)

If $LE_{Cto} < 0$, conservatively LE_{Cto} shall be taken as zero.

Where:

Willer C.	
LE _{Cto}	is the CO_2 emissions due to higher consumption of clinker in Portland-type common-practice blended cement (tonnes of CO_2)
PE _{CLINKER,y}	is the emissions of CO_2 per tonne of clinker in the project activity plant in year "y" (t CO_2 /t clinker)
CTO _{m,y}	is the annual production of common-practice blended cement by type "m" in year "y" (tonnes blended cement)
B _{blend}	is the baseline percentage of clinker in common-practice Blended Cement (tonne clinker/ tonnes blended cement)
P _{blend,y}	is the percentage of clinker in common-practice Blended Cement in year "y" (tonne clinker/ tonnes blended cement)

Common-practice blended cement is defined as the types of cements that have been produced in the cement plant prior to project implementation. Blended cement is defined as a product with different uses that has gypsum and/or different additives and different clinker ratios (for example, limestone, pozzolana, blast furnace slag, silica flume, fly ash and others). The domestic and export types of cement are included if they are common-practice blended cement.

In accordance with these definitions, for the identification of the baseline percentage of clinker considered in common-practice cement production (B_{blend}), the project proponents shall monitor the annual weighted percentage of clinker consumed in the total of blended cement produced for three (3) years before implementing the project activity. To do this, the project proponents shall monitor the total clinker consumption and total cement produced by each blended cement type ("m") every year of the three (3)-year period before implementing the project activity. The definition of each blended cement type ("m") must be in accordance with the respective regulatory cement norm of the cement market where the common-practice cement product has been commercialized.

The percentage of clinker in common-practice cement production (B_{blend}) is calculated as follows:

$$B_{blend} = AVERAGE(\Sigma CLNK_{BSL_{CNSM,m}} / \Sigma CTO_{BSL,m})$$
(3.5)

Where:

B _{blend}	is the baseline average percentage of clinker in the total blended cement production of the last three years prior to project implementation (tonne clinker/ tonnes cement)
CLNK _{BSL_CNSM,m} CTO _{BSL,m}	is the annual clinker consumption in each blended cement type "m" in the last three years prior to project implementation (tonnes of clinker) is the annual blended cement type "m" production in the last three years prior to project implementation (tonnes of blended cement)

For the identification of the percentage of clinker in common-practice blended cement production in the year "y" following project implementation ($P_{blend,y}$), the project proponents shall monitor the total amount of clinker consumed and total blended cement production in the year "y" for each cement type "m" defined in the baseline as blended cement of common-practice (see formula 3.4).

The percentage of clinker in common-practice cement production (P_{blend,y}) in the year "y" is calculated as follows:

$$P_{blend,y} = AVERAGE(\Sigma CLNK_{CONSM,m,y} / \Sigma CTO_{m,y})$$
(3.6)

P _{blend,y}	is the percentage of clinker in common-practice blended cement in the year "y" (tonne clinker/ tonnes blended cement)
CLNK _{CONSM,m,y}	is the annual consumption of clinker of each common-practice blended cement type "m" in the year "y" (tonnes of clinker)
CTO _{,m,y}	is the annual production of common-practice blended cement by type "m" in the year "y" (tonnes blended cement)

Emission reductions

Quantification of CO₂ emission reductions for year "y" following project implementation shall be calculated as follows:

$$ER_{y} = (BE_{Clinker} - PE_{Clinker,y}) \cdot CLNK_{y} - LE_{y}$$
(4)

Where:

ER _v	is the emission reductions in year "y" due to project activity (tonnes of CO_2)
BE _{CLINKER}	is the baseline emissions of CO_2 per tone of clinker in the project activity plant (tCO_2 /tonne clinker)
PE _{CLINKER,y}	is the emissions of CO_2 per tone of clinker in the project activity plant in year "y" (t CO_2 /tonne clinker)
LE _y	is the CO_2 emissions due to leakage (tonnes of CO_2)
CLNKy	is the annual clinker production in the year "y" (tonnes of clinker)

The total annual consumption of clinker in type "m" of common-practice blended cement production in year "y" (tonnes of clinker) must be determined according to the procedure of (d) of Leakage section above.

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

Changes required for methodology implementation in 2nd and 3rd crediting periods

No changes are required for methodology implementation in 2nd and 3rd Crediting Periods.

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

Data and parameters not monitored

ID Number:	
Parameter:	EF _{CO2,i}
Data unit:	tCO ₂ /GJ
Description:	CO_2 Emission factor for fossil or alternative fuel type <i>i</i> (tCO ₂ /GJ);
Source of data:	The value should be based on site-specific values or national values. If such data
	is not available, then IPCC defaults can be used.
Measurement	
procedures (if any):	
Any comment:	

ID Number:	PE-37
Parameter:	COEF _{i,j y}
Data unit:	tCO ₂ /tonne of fuel i
Description:	CO_2 emission coefficient of fuel <i>i</i> (t CO_2 / mass or volume unit of the fuel), taking into account the carbon content of the fuels used by relevant power sources <i>j</i> and the percent oxidation of the fuel in year " <i>y</i> "
Source of data:	The value is estimated using values of NCV, OXID (oxidation factor) and EF (CO_2 emission factor of the fuel). The value of NCV and EF should be based on site-specific values or national values. If such data is not available, then IPCC defaults can be used. IPCC default for OXID shall be taken from see Table 1-4 in the 2006 IPCC Guidelines, Vol. 2, page 1.25, for default values)
Measurement procedures (if any):	
Any comment:	

Data / Parameter:	CaO _{CLNK, BSL}
Data unit:	(%)
Description:	CaO content of the clinker produced
Source of data:	It is determined base on historical data for previous at least 3 years as part of
	laboratory quality control procedure
Measurement	Sampling of at least 3 years preceding the start of the project activity.
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	CaO _{RM, BSL}
Data unit:	(%)
Description:	CaO content of the raw meal due to non-carbonate sources before of project implementation. (If is applicable) These non-carbonate sources must to be different of non-carbonate materials of project activity
Source of data:	It is determined base on historical data for at least 3 years preceding the start of the project activity. The data is based on laboratory quality control procedures.
Measurement procedures (if any):	Sampling. Historical data of the previous 3 years Plant records
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC

	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	MgO _{CLNK, BSL}
Data unit:	(%)
Description:	MgO content of the clinker produced
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is based on laboratory quality control procedures.
Measurement	Sampling at previous 3 years.
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	MgO _{RM,BSL}
Data unit:	(%)
Description:	MgO content of the raw meal due to non-carbonate sources via calcium
	silicates or raw materials. (If is applicable) These non-carbonate sources must
	to be different of materials of project activity
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is based on laboratory quality control procedures.
Measurement	Sampling. Historical data at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	RM _{BSL}
Data unit:	tonne of raw meal
Description:	Annual consumption of raw meal in the base year
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is based on inventories.
Measurement	Weighfeeders/ Weighbridge/Stockpile control at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	CLNK _{BSL}
Data unit:	tonne of clinker
Description:	Annual production of clinker in the base year
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from inventories control procedures
Measurement	Weighfeeders/Stockpile control at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC

	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _{BSL}
Data unit:	GJ/tonne clinker
Description:	Specific Kiln Calorific Consumption for the baseline
Source of data:	Calculated as part of energy efficiency evaluation in baseline (at least three
	previous year)
Measurement	Historical data of the Plant records
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be calculated as part of normal plant level operations for energy
	performance evaluation. QA/QC requirements according to ISO 9000 or similar
	quality systems
Any comment:	The specific fuel consumption of a kiln is arguably the most important
	operating parameter

Data / Parameter:	ByPass
Data unit:	tonne of Bypass Dust
Description:	Annual production of Bypass dust leaving kiln system
Source of data:	It is determined base on historical data for previous 3 years as part of
	production control procedures
Measurement	Weighfeeders/ Weighbridge at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	d
Data unit:	%(released CO_2 expressed as a fraction of the total carbonate CO_2 in the raw
	meal)
Description:	CKD calcination rate
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from inventories control procedures
Measurement	Sampling at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	It could be estimated

Data / Parameter:	CKD
Data unit:	tonne of CKD Dust
Description:	Annual production of CKD dust leaving kiln system
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Weighfeeders/ Weighbridge at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)

QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{Drv,i}
Data unit:	tonne of additional fuel
Description:	Additional fossil fuel consumption for drying raw materials or fuel preparation in the baseline
Source of data:	It is determined base on historical data for at least 3 years preceding the start of the project activity. The data is sourced from production control procedures.
Measurement	Weighfeeders/ Weighbridge/Stockpile control at previous year
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{RM,Grid}
Data unit:	MWh
Description:	Baseline grid electricity consumption due to raw meal grinding
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{Feed,Grid}
Data unit:	MWh
Description:	Baseline grid electricity consumption due to fuel feeding
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{KO,Grid}
Data unit:	MWh
Description:	Baseline grid electricity consumption due to kiln operation
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC

	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{RM.SG}
Data unit:	MWh
Description:	Baseline self-generated electricity consumption due to raw meal grinding
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{Feed,SG}
Data unit:	MWh
Description:	Baseline self-generated electricity consumption due to fuel feeding
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 years
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{KO,SG}
Data unit:	MWh
Description:	Baseline self-generated electricity consumption due to kiln operation
Source of data:	It is determined base on historical data for at least 3 years preceding the start of the project activity. The data is sourced from production control procedures.
Measurement procedures (if any):	Field instruments at previous 3 years
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{Cto,BSL}
Data unit:	MWh
Description:	Baseline electricity consumption for cement grinding
Source of data:	It is determined base on historical data for at least 3 years preceding the start of
	the project activity. The data is sourced from production control procedures.
Measurement	Field instruments at previous 3 year
procedures (if any):	
Monitoring frequency:	Annually
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

III. MONITORING METHODOLOGY

Monitoring procedures

Data and parameters monitored

BASELINE

Data / Parameter:	FC _{i,Calcin}
Data unit:	Tonnes
Description:	Average of fuel type i consumed for clinker production in the baseline; it will
	be the same value as the one measured following project implementation
Source of data:	It is determined base on historical data for previous year as part of inventories
	control procedure
Measurement	Weighfeeders/ Weighbridge/Stockpile control at previous year
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{Total,Calcin}
Data unit:	tonne fuel/year
Description:	Average amount of total fuel consumed for clinker production in the baseline.
	It will be the same value as the one measured following project
	implementation.(See Formula 2.2.3)
Source of data:	It is determined base on historical data for previous year as part of inventories
	control procedure
Measurement	Weighfeeders/ Weighbridge/Stockpile control at previous year
procedures (if any):	
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{Total,Calcin}
Data unit:	tonne fuel/year
Description:	Average amount of total fuel consumed for clinker production in the baseline. It will be the same value as the one measured following project implementation.(See Formula 2.2.3)
Source of data:	It is determined base on historical data for previous year as part of inventories control procedure
Measurement procedures (if any):	Weighfeeders/ Weighbridge/Stockpile control at previous year
Monitoring frequency:	Monthly (Recorded)
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data unit:	tCO ₂ /MWh
Description:	Electricity grid emission factor
Source of data:	ACM0002 will be used to determine electricity emissions
Measurement	Estimated
procedures (if any):	
Monitoring frequency:	One time
QA/QC procedures:	N/A
Any comment:	

Data / Parameter:	EF _{CO2,Elec} SG
Data unit:	t CO ₂ /MWh
Description:	Electricity self-generation emission factor
Source of data:	calculated as the generation-weighted average emissions per electricity unit
	(tCO ₂ /MWh) of all self-generating sources
Measurement	Calculated
procedures (if any):	
Monitoring frequency:	One time
QA/QC procedures:	N/A
Any comment:	

PROJECT EMISSIONS

Data / Parameter:	OutCaOy
Data unit:	%
Description:	CaO content (%) of the clinker produced
Source of data:	It will be measured as part of laboratory quality control procedure
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	InCaO _y
Data unit:	%
Description:	CaO content (%) of the raw material in year "y" the due to the non-carbonate
	sources of new non-carbonate materials of the project activity
Source of data:	It will be measured as part of laboratory quality control procedure
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	OutMgO _y
Data unit:	%
Description:	MgO content (%) of the clinker produced
Source of data:	It will be measured as part of laboratory quality control procedure
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	InMgO _v
Data unit:	%
Description:	MgO content (%) of the raw material in year "y" the due to the non-carbonate
	sources of new non-carbonate materials of the project activity
Source of data:	It will be measured as part of laboratory quality control procedure
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	RMy
Data unit:	tonne of raw meal consumed/year
Description:	Annual consumption of raw meal in year "y"
Source of data:	It will be measured with field instruments and checked with inventories control
	procedure
Measurement	Weighfeeders/ Weighbridge/Stockpile control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	CLNKy
Data unit:	tonnes of clinker produced/year
Description:	Annual production of clinker in year "y"
Source of data:	It will be measured with field instruments and checked with inventories control procedure
Measurement procedures (if any):	Weighfeeders /Stockpile control
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{i,Calcin,y}
Data unit:	tonne fuel i / year
Description:	Annual fuel type i consumption for clinker production in year "y"
Source of data:	It will be measured with field instruments and checked with inventories control
	procedure
Measurement	Weighfeeders /Stockpile control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{Total,Calcin,y}
Data unit:	Tonne of fuels/year
Description:	Total fuel consumption in year "y"
Source of data:	It will be measured with field instruments and checked with inventories control
	procedure
Measurement	Weighfeeders/Weighbridge/Stockpile control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _y
Data unit:	GJ/tonne clinker produced
Description:	Specific Kiln Calorific Consumption for the year "y"
Source of data:	Calculated as part of project emission results
Measurement	Plant records
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _{y,measured}
Data unit:	GJ/tonne clinker produced
Description:	Specific Kiln Calorific Consumption measured in the year "y"
Source of data:	Calculated as part of energy efficiency evaluation in year "y"
Measurement	Plant records
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

CDM – Executive Board

Data / Parameter:	Daily SKC _{ex}
Data unit:	GJ/tonne clinker produced/day
Description:	Daily Specific Kiln Calorific Consumption in each 30 day of ex-ante
	monitoring
Source of data:	Calculated as part of ex-ante monitoring procedure
Measurement	Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Daily
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _{ex}
Data unit:	GJ/tonne clinker produced
Description:	Arithmetic mean of Specific Kiln Calorific Consumption during each day of 30 days of
	continuous operation
Source of data:	Calculated as part of ex-ante monitoring procedure
Measurement	Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _{ex} optimal range
Data unit:	(GJ/tonne clinker)
Description:	Interval of 95% of confidence for specific kiln calorific consumption during ex-
	ante monitoring
Source of data:	Result data of ex-ante monitoring procedure
Measurement	Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	SKC _j
Data unit:	(GJ/tonne clinker).
Description:	Average of specific kiln calorific consumption of project activity before of the year "y". The term "j" is a counter and goes from 1 to "y-1". If "y-1" is equal of "cero" $\overline{SKC_j} = SKC_{BLS}$
Source of data:	Calculated as part of energy efficiency evaluation for project activity
Measurement	Plant records
procedures (if any):	
Monitoring frequency:	Annually
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

CDM – Executive Board

Data / Parameter:	%AMC _v
Data unit:	%
Description:	Percentage of ACM in the raw meal production in the year "y" due to project activity implementation The %AMC could be %SO3 or %(SO3 and CaF2) or Lime Saturation Factor (LSF) or raw meal particle size (fineness)
Source of data:	It will be measured as part of laboratory quality control procedure for project activity
Measurement procedures (if any):	Sampling
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	Daily %AMC _{ex}
Data unit:	%
Description:	Daily percentage of alternative material composition in clinker production due
	to the implementation of project activity in 30 days of continuous operation.
	The %AMC could be %SO ₃ or %(SO ₃ and CaF ₂) or Lime Saturation Factor
	(LSF) or raw meal particle size (fineness)
Source of data:	It will be measured as part of ex-ante monitoring data
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Hour
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	<u>₩AMC</u> ex
Data unit:	%
Description:	Arithmetic mean of %AMC in the raw meal during ex-ante monitoring
Source of data:	Result data of ex-ante monitoring procedure
Measurement	Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	%AMC _{ex} optimal range
Data unit:	% (interval)
Description:	Interval of 95% of confidence for %AMC content in the raw meal during ex-
	ante monitoring
Source of data:	Result data of ex-ante monitoring procedure
Measurement	Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	Daily FF _{ex i}
Data unit:	(tonne fuel/day)
Description:	Daily consumption of fuel type i 30 days of continuous operation
Source of data:	It will be measured as part ex-ante monitoring procedure through weighfeeders
Measurement	Weighfeeders.Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Daily
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	Daily CLNK _{ex}
Data unit:	Tonne of clinker produced/day
Description:	Daily clinker production in 30 days of continuous operation
Source of data:	It will be measured as part ex-ante monitoring procedure through field
	instruments
Measurement	Weighfeeders. Ex-ante monitoring procedure record
procedures (if any):	
Monitoring frequency:	Daily
QA/QC procedures:	QA/QC requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	ByPassy
Data unit:	tonnes of Bypass Dust
Description:	Annual production of Bypass dust leaving kiln system in year "y"
Source of data:	It will be measured as part of normal operations
Measurement	Weighfeeders/Weighbridge
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	d
Data unit:	(released CO_2 expressed as a fraction of the total carbonate CO_2 in the raw
	meal)
Description:	CKD calcination rate % in year "y"
Source of data:	It will be measured as part of normal operations
Measurement	Sampling
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	This parameter could be estimated

CDM – Executive Board

Data / Parameter:	CKDy
Data unit:	tonne of CKD Dust
Description:	Annual production of CKD dust leaving kiln system in year "y"
Source of data:	It will be measured as part of normal operations
Measurement	Weighfeeders/Weighbridge
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	FC _{Dry addl,i,y}
Data unit:	tonnes of additional fuel
Description:	Additional Fossil fuel consumption for drying raw materials or fuels in year "y"
Source of data:	It will be measured with field instruments and checked with inventories control
	procedure
Measurement	Weighfeeders/Weighbridge/Stockpile control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{RM,Grid,y}
Data unit:	MWh
Description:	Grid electricity consumption due to raw meal grinding in year "y"
Source of data:	It will be measured with field instruments and checked with production control
	procedures
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{Feed,Grid,y}
Data unit:	MWh
Description:	Grid electricity consumption due to fuel feeding in year "y"
Source of data:	It will be measured with field instruments and checked with production control
	procedures
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

CDM – Executive Board

Data / Parameter:	EC _{KO,Grid,y}
Data unit:	MWh
Description:	Grid electricity consumption due to kiln operation in year "y"
Source of data:	It will be measured with field instruments and checked with production control
	procedures
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{RM,SG,y}
Data unit:	MWh
Description:	Electricity self-generation consumption due to raw meal grinding in year "y"
Source of data:	It will be measured with field instruments and checked with production control procedures
Maagumamaant	Field/automatic instruments
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{Feed,SG,y}
Data unit:	MWh
Description:	Electricity self-generation consumption due to fuel feeding in year "y"
Source of data:	It will be measured with field instruments and checked with production control
	procedures
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	EC _{KO,SG,y}
Data unit:	MWh
Description:	Electricity self-generation consumption due to kiln operation in year "y"
Source of data:	It will be measured with field instruments and checked with production control
	procedures
Measurement	Field/automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	$F_{i,j,y}$
Data unit:	Tonne fuel i / year
Description:	Amount of fuel i (in a mass or volume unit) consumed by relevant power
	sources j in year y
Source of data:	It will be measured with field instruments and checked with inventories control
	for self power generation
Measurement	Weighfeeders/ Weighbridge/Stockpile control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	GEN _{j,y}
Data unit:	MWh
Description:	Electricity (MWh) generated by the source <i>j</i>
Source of data:	It will be measured with field instruments and checked with inventories control
	for self generation
Measurement	Field /automatic instruments
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	CLNK _{CONSM,m,y}
Data unit:	tonnes of clinker
Description:	Annual consumption of clinker in each common-practice blended cement type "m" in the year "y"
Source of data:	It will be measured with field instruments and checked with production control procedures
Measurement	Weighfeeders / Stock piles control
procedures (if any):	
Monitoring frequency:	Monthly
QA/QC procedures:	These data will be collected as part of normal plant level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

AM0040 / Version 01 Sectoral Scope 04 29 September 2006

LEAKAGE

Data / Parameter:	FC _{Trans}
Data unit:	kg of fuel/kilometer
Description:	Fuel consumption of the vehicle per kilometer
Source of data:	Estimated as part of fuel consumption evaluation of logistic department or data
	from external suppliers
Measurement	Logistic registered data or third part
procedures (if any):	
Monitoring frequency:	Annually
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	Dist
Data unit:	km
Description:	Distance between the source of fuel and the project activity plant
Source of data:	It will be registered on logistic department as part of inventories control
Measurement	Logistic records or purchased tickets
procedures (if any):	
Monitoring frequency:	Per trip
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	Q _{trip}
Data unit:	Tonnes materials /vehicle
Description:	
Source of data:	It will be registered on logistic department as part of inventories control
Measurement	Weighbridge data and purchase receipts
procedures (if any):	
Monitoring frequency:	Per trip
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC
	requirements according to ISO 9000 or similar quality systems
Any comment:	

Data / Parameter:	InALTM _y	
Data unit:	Tonne alternative materials	
Description:	Annual consumption of alternative materials in raw meal in year y	
Source of data:	It will be registered as part of inventories control	
Measurement	Weighbridge/Stockpile control data	
procedures (if any):		
Monitoring frequency:	Per trip	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	EC _{Conv} ,y	
Data unit:	MWh	
Description:	Annual Electricity consumption for conveyor system for alternative materials	
Source of data:	It will be measured with field instruments and checked with production control	
	procedures	
Measurement	Field instruments	
procedures (if any):		
Monitoring frequency:	Monthly	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	EC _{Cto, y}	
Data unit:	MWh	
Description:	Electricity consumption for cement grinding in year "y"	
Source of data:	will be determined as part of production control procedures	
Measurement	ield instruments	
procedures (if any):		
Monitoring frequency:	Annually	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	P _{blend,y}	
Data unit:	tonne clinker/ tonnes blended cement	
Description:	Percentage of clinker in common-practice Blended Cement in year "y"	
Source of data:	tesult of project emission calculation	
Measurement	Plant records of project activity	
procedures (if any):		
Monitoring frequency:	Annually	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	B _{blend}	
Data unit:	(tonne clinker/ tonnes blended cement)	
Description:	Baseline percentage of clinker in common-practice Blended Cement	
Source of data:	t is determined base on historical data for previous 3 year	
Measurement	Plant records at previous 3 year	
procedures (if any):		
Monitoring frequency:	Annually	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	CTO _{BSL,m}	
Data unit:	tonne cement	
Description:	Annual blended cement type "m" production on the last three years before of project implementation	
Source of data:	It is determined base on historical data for previous 3 year as part of production	
	control procedures	
Measurement	Weighfeeders/field instruments at previous 3 year	
procedures (if any):		
Monitoring frequency:	Monthly	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	CTO _{m,y}	
Data unit:	tonne cement	
Description:	Annual production of common-practice blended cement by type "m" in year "y"	
Source of data:	It will be determined as part of production control procedures	
Measurement	Weighfeeders/field instruments	
procedures (if any):		
Monitoring frequency:	Monthly	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Data / Parameter:	CLNK _{BSL CNSM,m}	
Data unit:	tonnes clinker consumed	
Description:	Annual clinker consumption in each blended cement type "m" on the last three	
	years before of project implementation	
Source of data:	It is determined base on historical data for previous 3 year as part of production	
	control procedures	
Measurement	Weighfeeders/field instruments at previous 3 year	
procedures (if any):		
Monitoring frequency:	Monthly	
QA/QC procedures:	These data will be collected as part of normal logistic level operations. QA/QC	
	requirements according to ISO 9000 or similar quality systems	
Any comment:		

Annex 1

Procedure for ex ante determination of Specific Kiln Calorific Consumption

Title: Procedure for ex-ante monitoring to be implemented at the beginning of the project implementation

1. Objective

The main purpose of this ex-ante monitoring is to develop an industrial testing procedure (where kiln operational variables are under total control) that shows the highest specific consumption reduction that is possible to be achieved during project implementation.

- 2. Development
- 2.1 Laboratory research and Protocol of sampling definition
- 2.1.1. Develop a burnability analysis of raw meal(1) in order to identify the theoretical "optimum-range" of concentration of new raw materials and the design of the raw meal that would permit the reduction of energy consumption for clinker preparation
- 2.1.2 The outputs of the burnability analysis are the "Free Lime vs. Concentration of alternative materials (%AMC)" and "Free Lime vs. Temperature" graphics.
- 2.1.3 Design the Industrial testing Protocol. The Protocol must follow all the Plant procedures for quality control (QC) and quality assurance (QA) in order to guarantee the representative sampling in terms of size, frequency, chemical and physical analysis with its respective quality index control (2). The Protocol has to define the equipment involved, all material specifications and requirements of data records. The Protocol for ex-ante monitoring shall consider the following points

2.2. Initial operational adjustments and production of new raw meal

- 2.2.1 Develop a program for total consumption of the inventory of raw meal produced for clinker manufacturing prior to project implementation and replacement with the new raw material according to a laboratory design.
- 2.2.2 Develop operational adjustments and stabilization of operating conditions. The period of time for 2.2. And 2.3 could be adjustable according to the particular operating conditions of each cement plant.

2.3. The operational transitional process

- 2.3.1. Start the kiln operation with the new design of raw materials according burnability test results (project activity)
- 2.3.2. Daily follow-up of the operational data obtained and recording the global results. The principal records of the Plant during the monitoring procedure are:
 - Concentration of alternative material (%AMC) in the raw meal feeding, The %AMC could be %SO3 or %(SO3 and CaF2) or Lime Saturation Factor (LSF) or raw meal particle size (fineness)
 - Fuel consumption with its LHV
 - Total clinker production
 - The main operational variables of the kiln as indicators of general conditions of operations

2.4. Kiln operation under total control of the operational variables

- 2.4.1. Guarantee the stabilization and operation at as regular operational conditions as possible 30-day of continuous operation (3)
- 2.4.2. Follow up the same daily data of the operational transitional process parameters defined above.

UNFCO

Executive Board		AM0040 / Version Sectoral Scope 29 September 20
2.4.3. Register the concentration		previous month values. f statistical confidence level of the 30 –day samples of the AMC) in the raw meal and the specific consumption in
results have be		f the results and carry out the analysis to show that these oretical research and quality control, as well as with
3. Results		
3.1 Obtain and re	cord the following data:	
Daily SKC _{ex}		Calorificfic Consumption in each 30-day period of ex-
Daily %AMC _{ex}	 Daily SKC_{ex-ante} = Σ (Daily percentage of a to the implementatio The %AMC could be 	(Daily FF_{ex} i * LHV_{ex} i) / Daily $CLNK_{ex}$ (3.1) alternative material composition in clinker production due n of project activity in 30 days of continuous operation e %SO3 or %(SO3 and CaF2) or Lime Saturation Facto
Daily FF_{ex} i	 (LSF) or raw meal particle size (fineness) Daily consumption of fuel type i 30 days of continuous operation (tonr 	
LHV _{ex} i	fuel/day) = Daily low heating value of fuel type i in 30 days of continuous operation (GJ	
DailyCLNK _{ex}	tonne fuel /day) = Daily clinker produc /day)	ction in 30 days of continuous operation (tonne clinke
$\overline{\text{SKC}_{ex}}$	= Arithmetic mean of 30 days of continuou	Specific Kiln Calorific Consumption during each day or s operation (GJ/tonne clinker) %AMC in the raw meal during ex-ante monitoring
σ	Standard deviation of 30 days of continuous operation	
$1.96\frac{\sigma}{\sqrt{30}}$	= Interval of 95% of co	onfidence of 30 samples in ex-ante monitoring
"%AMC _{ex} optimal range"	$\overline{\%AMCex\pm 1.96}\frac{\sigma}{\sqrt{30}}$	Interval of 95% of confidence for %AMC content i the raw meal during ex-ante monitoring
"SKC _{ex} optimal range"	$\overline{SKCex} \pm 1.96 \frac{\sigma}{\sqrt{30}}$	Interval of 95% of confidence for specific kiln calorific consumption during ex-ante monitoring (GJ/tonn clinker)
4. References and	Notes	
behavior of th analysis is a c and Theisen 1	e raw meal in the sintering procedure in Cement	now easily the clinker transformation happens and the rocess (clinker phases formation). The burnability t Industry and was developed by F.L.Smidth (Fundal 197 he raw meal design, with regard to chemical and mineral

- (2) The minimum quality control procedures are described in "The Cement Plant Operations Handbook 4th Edition", International Cement Review, 2005, Chapter 6.
- (3) Thirty continuously days of sample (one month) is the minimum amount of daily average values that reflect the operational conditions and evaluate if the process complies with the minimum quality assurance specifications. Besides, the standard unit of time for Cement Industry is a month. Plant operational records are normally measured in this period of time (i.e. raw material inventories, fuel consumption and kiln energy performance)
- (4) The consistency between industrial testing and the laboratory research results guarantees that project activity are related only by means of new alternative materials and not as the results of other energy efficiency measures or fuel switching options that may occur at the same time as the project implementation.