

Revised Simplified baseline and monitoring methodologies for selected smallscale afforestation and reforestation project activities under the clean development mechanism

I. Introduction

- 1. This annex contains simplified baseline and monitoring methodologies for selected small-scale afforestation and reforestation (A/R) clean development mechanism (CDM) project activities. Specifically it covers:
 - (a) A simplified baseline methodology and default factors for small-scale A/R project activities implemented on grasslands or croplands;
 - (b) A simplified monitoring methodology, based on appropriate statistical methods, to estimate, measure and monitor the actual net greenhouse gas (GHG) removals by sinks and leakage.
- 2. The most likely baseline scenario of the small-scale A/R CDM project activity is considered to be the land-use prior to the implementation of the project activity, either grasslands or croplands. Project activities implemented on settlements or wetlands are not included in this methodology.¹
- 3. These simplified baseline and monitoring methodologies are not applicable to grasslands or croplands that have been ploughed before the plantation is established. Also, they do not apply to project activities where the displacement of households or activities, due to the implementation of the A/R CDM project activity, is estimated to be larger than 50 per cent.
- 4. In accordance with decision 14/CP.10, project participants may propose new simplified methodologies or amendments to these simplified monitoring methodologies for project activities for which these would not be applicable. Such proposed new methodologies would be submitted to the CDM Executive Board for consideration and approval.
- 5. Before using simplified methodologies, project participants shall demonstrate whether:
 - (a) The land of the project activity is eligible, using procedures for the demonstration of land eligibility contained in **appendix A**;
 - (b) The project activity is additional, using the procedures for the assessment of additionality contained in **appendix B.**

II. General guidance

6. **Carbon pools** to be considered by these methodologies are above-ground biomass and below-ground biomass, hereinafter referred to collectively as "living biomass pool". Values chosen for parameters to estimate changes in carbon stocks in the baseline and monitoring methodologies, as well as the choice of approach, shall be justified and documented (including sources and references) in the clean

¹ Wetlands and settlements are not covered by the present methodologies for two reasons: methodologies for wetlands are still under development and, given the state of knowledge, simplification is not yet possible; conversions from settlements or wetlands to forests are unlikely for several reasons, including the social and environmental impacts that such conversions can cause.

development mechanism small-scale afforestation and reforestation project design document (CDM-SSC-AR-PDD). The choice of equations and values for parameters shall be conservative, i.e., the net anthropogenic GHG removals by sinks shall not be overestimated.

7. **Emissions of GHGs from the actual net GHG removals by sinks** do not need to be accounted for.

III. Simplified baseline methodologies for small-scale afforestation and reforestation small-scale project activities under the clean development mechanism

A. Baseline net greenhouse gas removals by sinks

- 8. Simplified methodologies for estimating the baseline net GHG removals by sinks are based on the baseline approach specified by paragraph 22 (a) of the modalities and procedures for afforestation and reforestation project activities under the clean development mechanism: "Existing or historical, as applicable, changes in carbon stock in the carbon pools within the project boundary."
- 9. According to decision 14/CP.10, annex, appendix B, paragraphs 2 and 3:
 - "If project participants can provide relevant information that indicates that, in the absence of the small-scale afforestation or reforestation project activity under the CDM, no significant changes in the carbon stocks within the project boundary would have occurred, they shall assess the existing carbon stocks prior to the implementation of the project activity. The existing carbon stocks shall be considered as the baseline and shall be assumed to be constant throughout the crediting period.
 - "If significant changes in the carbon stocks within the project boundary would be expected to occur in the absence of the small-scale afforestation or reforestation project activity, project participants shall" use the simplified baseline methodology contained in this document.
- 10. In order to assess if significant changes in the baseline carbon stocks within the project boundary would have occurred in absence of the project activity, project participants shall assess whether changes in carbon stocks in the baseline land-use type (grasslands or croplands), in particular the living biomass pool of woody perennials² and the below-ground biomass of grasslands, are expected to be significant. They shall provide documentation to prove this, for example, by including expert judgment, and proceed as follows:
 - (a) If significant changes in the carbon stocks, in particular the living biomass pool of woody perennials and the below-ground biomass of grasslands, are not expected to occur in the absence of the project activity, the changes in carbon stocks shall be assumed to be zero;
 - (b) If the carbon stock in the living biomass pool of woody perennials or in below-ground biomass of grasslands is expected to decrease in the absence of the project activity, the baseline net GHG removals by sinks shall be assumed to be zero. In the above case, the baseline carbon stocks in the carbons pools is constant at the level of the existing carbon stock measured at the start of the project activity;
 - (c) Otherwise, baseline net GHG removals by sinks shall be equal to the changes in carbon stocks from the living biomass pool of woody perennials or from below-ground biomass

² Woody perennials refers to the non-tree vegetation (for example coffee, tea, rubber or oil palm) and shrubs that are present in croplands and grasslands below the thresholds (of canopy cover, minimum area and tree height) used to define forests.

of grasslands that are expected to occur in the absence of the project activity and shall be estimated using the methodology in section III. A below.

A. Estimating baseline net greenhouse gas removals by sinks

11. Baseline net GHG removals by sinks will be determined by the equation:

$$B_{(t)} = \sum_{i} (B_{A(t)i} + B_{B(t)i}) * A_{i}$$
 (1)

where:

 $B_{(t)}$ = carbon stocks in the living biomass pools within the project boundary at time t in the absence of the project activity (t C)

 $B_{A(t)i}$ = carbon stocks in above-ground biomass at time t of stratum i in the absence of the project activity (t C/ha)

 $B_{B(t)i}$ = carbon stocks in below-ground biomass at time t of stratum i in the absence of the project activity (t C/ha)

 A_i = project activity area of stratum i (ha)

i = stratum i

12. Stratification of the project activity for the purposes of estimating the baseline net GHG removals by sinks shall proceed in accordance with section 4.3.3.2 of the *Good Practice Guidance for Land Use, Land-Use Change and Forestry* of the Intergovernmental Panel on Climate Change (IPCC) (hereinafter referred to as the IPCC good practice guidance for LULUCF). For each stratum, the following calculations shall be performed as shown below.

For above-ground biomass

13. $B_{A(t)}$ is calculated per stratum *i* as follows:

$$B_{A(t)} = M_{(t)} * 0.5 (2)$$

where:

 $B_{A(t)}$ = carbon stocks in above-ground biomass at time t in the absence of the project activity (t C/ha)

 $M_{(t)}$ = above-ground biomass at time t that would have occurred in the absence of the project activity $(t \, dm/ha)^3$

0.5 = carbon fraction of dry matter (t C/t dry matter)

14. Values for $M_{(t)}$ shall be estimated using average biomass growth rates specific to the region and the age of the woody perennial using the following equation:

if
$$a < m$$
, then $M_{(t)} = g * a$; if $a \ge m$, then $M_{(t)} = g * m$ (3)

where:

g = annual biomass growth rate of the woody perennial (t dm/ha/year)

m = time to maturity of the woody perennial (years)

a = average age of the woody perennial (years)

-

 $^{^{3}}$ dm = dry matter

- Documented local values for g should be used. In the absence of such values, national default values should be used. If national values are also not available, the values should be obtained from table 3.3.2 of the IPCC good practice guidance for LULUCF.
- 16. Values for m considered by the project activity shall be specified by project participants for each species considered to be part of the baseline. These values shall be identified in the CDM-SSC-AR-PDD.

For below-ground biomass

17. $B_{B(t)}$ is calculated per stratum i as follows:

$$B_{B(t)} = M_{(t)} * R * 0.5 (4)$$

where:

 $B_{B(t)}$ = carbon stocks in below-ground biomass at time t in the absence of the project activity (t C/ha)

= above-ground biomass at time t that would have occurred in the absence of the project activity (t dm/ha)

= root to shoot ratio (t dm/t dm) R

= carbon fraction of dry matter (t C/t dm)

18. Documented local values for R should be used. In the absence of such values, national default values should be used. If national values are also not available, the values should be obtained from table 3.4.3 of the IPCC good practice guidance for LULUCF.

B. Actual net greenhouse gas removals by sinks

19. Actual net GHG removals by sinks consider only the changes in carbon pools for the project scenario (see paragraph 8 above). The stocks of carbon for the project scenario at the starting date of the project activity (t=0) shall be the same as for the projection of the baseline net GHG removals by sinks at t=0. For all other years, the carbon stocks within the project boundary at time $t(N_0)$ shall be calculated as follows:

$$N_{(t)} = \sum_{i} (N_{A(t)i} + N_{B(t)i}) * A_{i}$$
 (5)

where:

 $N_{(t)}$ = total carbon stocks in biomass at time t under the project scenario (t C/ha)

 $N_{A(t)i}$ = carbon stocks in above-ground biomass at time t of stratum i under the project scenario (t C/ha)

 $N_{B(t)i}$ = carbon stocks in below-ground biomass at time t of stratum i under the project scenario (t C/ha)

= project activity area of stratum i (ha)

= stratum i

Stratification for the project scenario shall be undertaken in accordance with section 4.3.3.2 of the IPCC good practice guidance for LULUCF. The calculations shown below shall be performed for each stratum.

⁴ The starting date of the project activity should be the time when the land is prepared for the initiation of the afforestation or reforestation project activity under the CDM. In accordance with paragraph 23 of the modalities and procedures for afforestation and reforestation project activities under the CDM, the crediting period shall begin at the start of the afforestation and reforestation project activity under the CDM (see UNFCCC web site at http://unfccc.int/resource/docs/cop9/06a02.pdf#page=21).

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 5

For above-ground biomass

21. $N_{A(t)}$ is calculated per stratum *i* as follows:

$$N_{A(t)} = T_{(t)} * 0.5$$
 (6)

where:

 $N_{A(t)}$ = carbon stocks in above-ground biomass at time t under the project scenario (t C/ha)

 $T_{(t)}$ = above-ground biomass at time t under the project scenario (t dm/ha)

0.5 = carbon fraction of dry matter (t C/t dm)

$$T_{(t)} = SV_{(t)} * BEF * WD \tag{7}$$

where:

 $T_{(t)}$ = above-ground biomass at time t under the project scenario (t dm/ha)

 $SV_{(t)}$ = stem volume at time t for the project scenario (m³/ha)

BEF = biomass expansion factor (over bark) from stem volume to total volume (dimensionless)

WD = basic wood density (t dm/m³)

Values for $SV_{(t)}$ shall be obtained from national sources (such as standard yield tables). Documented local values for BEF should be used. In the absence of such values, national default values should be used. If national values are also not available, the values should be obtained from table 3A.1.10 of the IPCC good practice guidance for LULUCF. Documented local values for WD should be used. In the absence of such values, national default values shall be consulted. If national default values are also not available, the values should be obtained from table 3A.1.9 of the IPCC good practice guidance for LULUCF.

For below-ground biomass

23. $N_{B(t)}$ is calculated per stratum *i* as follows:

$$N_{B(t)} = T_{(t)} * R * 0.5$$
 (8)

where:

 $N_{R(t)}$ = carbon stocks in below-ground biomass at time t under the project scenario (t C/ha)

 $T_{(t)}$ = above-ground biomass at time t under the project scenario (t dm/ha)

R = root to shoot ratio (dimensionless)

0.5 = carbon fraction of dry matter (t C/t dm)

24. Documented national values for R should be used. If national values are not available, appropriate values should be obtained from table 3A.1.8 of the IPCC good practice guidance for LULUCF.

C. Leakage

25. According to decision 14/CP.10, annex, appendix B, paragraph 9: "If project participants demonstrate that the small-scale afforestation or reforestation project activity under the CDM does not result in the displacement of activities or people, or does not trigger activities outside the project boundary, that would be attributable to the small-scale afforestation or reforestation project activity under

the CDM, such that an increase in greenhouse gas emissions by sources occurs, a leakage estimation is not required. In all other cases leakage estimation is required."

- 26. Project participants should assess the possibility of leakage from the displacement of activities or people by considering the following indicators:
 - (a) Percentage of families/households of the community involved in or affected by the project activity displaced due to the project activity;
 - (b) Percentage of total production of the main produce (for example, meat or corn) within the project boundary displaced due to the project activity.
- 27. If the value of both of these two indicators is lower than 10 per cent, then

$$L_{(t)} = 0 (9)$$

where:

 $L_{(t)}$ = leakage attributable to the project activity within the project boundary at time t (t C)

28. If the value of either of these two indicators is higher than 10 per cent and less than or equal to 50 per cent, then leakage shall be equal to 15 per cent of the actual net GHG removals by sinks, that is:

$$L_{(t)} = N_t * 0.15 \tag{10}$$

where:

 $L_{(t)}$ = leakage attributable to the project activity within the project boundary at time t (t C) = Carbon stocks in the living biomass pools within the project boundary at time t under the project scenario (t C)

- 29. As indicated in paragraph 3 above, if the value of any of these two indicators is larger than 50 per cent, net anthropogenic removals by sinks cannot be estimated.
- 30. If project participants consider that the use of fertilizers would be significant leakage of N₂O (>10 per cent of the net anthropogenic GHG removals by sinks) emissions should be estimated in accordance with the IPCC *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (hereinafter referred to as IPCC good practice guidance).

D. Ex ante estimation of net anthropogenic greenhouse gas removals by sinks

- 31. Net anthropogenic greenhouse gas removals by sinks is the actual net GHG removals by sinks minus the baseline net GHG removals by sinks minus leakage.
- 32. The resulting temporary certified emission reductions (tCERs) at the year of verification tv are calculated as follows:

$$tCER_{(ty)} = 44/12 * (N_{(ty)} - B_{(ty)} - L_{(ty)})$$
(11)

if changes in carbon stock are considered to be equal to zero, then $B_{(tv)} = B_{(t=0)}$ and

$$L_{(tv)} = 0.15 * N_{(tv)}$$
 (if required, see paragraph 28 above)

where:

CDM - AR WG

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 7

 $tCER_{(tv)}$ = tCERs emitted at year of verification tv (t CO₂)

 $N_{(tv)}$ = carbon stocks in the living biomass pools within the project boundary at year of

verification tv under project scenario (t C)

 $B_{(ty)}$ = carbon stock in the living biomass pools within the project boundary at year of

verification tv that would have occurred in the absence of the project activity (t C)

 $L_{(tv)}$ = leakage attributable to the project activity within the project boundary at year of

verification tv (t C)

tv = year of verification

44/12 = conversion factor from t C to t CO₂ equivalent (t CO₂/t C)

33. The resulting long-term certified emission reductions (ICERs) at the year of verification tv are calculated as follows:

$$lCER_{(tv)} = 44/12 * [(N_{(tv)} - N_{(tv-\kappa)}) - L_{(tv)}]$$
(12)

 $L_{(tv)} = 0.15 * (N_{(tv)} - N_{(tv-\kappa)})$ (if required, see paragraph 27 above)

 $N_{(tv-\kappa)} = N_{(t=0)}$ for the first verification

where:

 $lCER_{(tv)}$ = lCERs emitted at vear of verification tv (t CO₂)

 $N_{(tv)}$ = carbon stocks in the living biomass pools within the project boundary at year of

verification tv under project scenario (t C)

 $B_{(tv)}$ = carbon stock in the living biomass pools within the project boundary at year of verification

ty that would have occurred in the absence of the project activity (t C)

 $L_{(y)}$ = leakage attributable to the project activity within the project boundary at year of

verification tv (t C)

tv = year of verification

 κ = time span between two verifications

= conversion factor from t C to t CO_2 equivalent (t CO_2/t C)

34. Project participants should provide in the CDM-SSC-AR-PDD a projection of the net anthropogenic GHG removals as tCERs or lCERs for all crediting periods.

IV. Simplified monitoring methodology for small-scale afforestation and reforestation projects under the clean development mechanism

A. Ex post estimation of the baseline net greenhouse gas removals by sinks

35. In accordance with decision 14/CP.10, appendix B, paragraph 6, no monitoring of the baseline is requested. Baseline net GHG removals by sinks for the monitoring methodology will be the same as using the simplified baseline methodology in section III. B above.

B. Ex post estimation of the actual net greenhouse gas removals by sinks

36. Before performing the sampling to determine any changes in carbon stocks, project participants need to measure and monitor the area that has been planted. This can be performed through, for example, on-site visits, analysis of cadastral information, aerial photographs or satellite imagery of adequate resolution.

- 37. Once project participants have selected the method to monitor the area that has been planted, this method should be used to monitor the performance of the planted areas throughout the project activity. If significant underperformance is detected, changes in carbon stocks from such areas shall be assessed as a separate stratum.
- 38. Carbon stocks shall be estimated through stratified random sampling procedures and the following equations:

$$P_{(t)} = \sum_{i} (P_{A(t)i} + P_{B(t)i}) * A_i$$
 (13)

where:

 $P_{(t)}$ = carbon stocks within the project boundary at time t achieved by the project activity (t C)

 $P_{A(t)i}$ = carbon stocks in above-ground biomass at time t of stratum i achieved by the project activity during the monitoring interval (t C/ha)

 $P_{B(t)i}$ = carbon stocks in below-ground biomass at time t of stratum i achieved by the project activity during the monitoring interval (t C/ha)

 A_i = project activity area of stratum i (ha)

 $i = \operatorname{stratum} i$

39. Stratification for sampling shall be the same as the stratification for the ex ante estimation of the actual net GHG removals by sinks (section III.C above). The calculations shown below will be performed for each stratum.

For above-ground biomass

40. $P_{A(t)}$ is calculated per stratum *i* as follows:

$$P_{A(t)} = E_{(t)} * 0.5 ag{14}$$

where:

 $P_{A(t)}$ = carbon stocks in above-ground biomass at time t achieved by the project activity during the monitoring interval (t C/ha)

 $E_{(t)}$ = estimate of above-ground biomass at time t achieved by the project activity (t dm/ha)

0.5 = carbon fraction of dry matter (t C/t dm)

- 41. $E_{(t)}$ shall be estimated through the following steps:
 - (a) **Step 1:** Design a statistically sound sampling procedure. Such procedures should be designed according to the standard methods described in section 4.3.3.4. of the IPCC good practice guidance LULUCF. Additional strata should be considered subsequently for areas affected by fires and pests. This procedure includes the specification of the number, type and size of permanent plots and should be described in the CDM-SSC-AR-PDD. The allowed precision target for monitoring shall be not larger than ± 10 per cent, at a 95 per cent confidence level for the mean;
 - (b) **Step 2:** Establish and mark permanent plots and document their location in the first monitoring report;
 - (c) **Step 3**: Measure the diameter at breast height (DBH) or DBH and tree height, as appropriate; this measure which should be stated in the monitoring reports;

- (d) **Step 4:** Estimate the above-ground biomass (AGB) using allometric equations developed locally or nationally. If these allometric equations are not available:
 - (i) Option 1: Use allometric equations included in appendix C to this report or in annex 4A.2 of the IPCC good practice guidance for LULUCF;
 - (ii) Option 2: Use biomass expansion factors and stem volume as follows:

$$E_{(t)} = SV * BEF * WD \tag{15}$$

where:

 $E_{(t)}$ = estimate of above-ground biomass at time t achieved by the project activity (t dm/ha)

 $SV = \text{stem volume } (m^3/ha)$

WD = basic wood density (t dm/m³)

BEF = biomass expansion factor (over bark) from stem volume to total volume (dimensionless)

- 42. Project participants shall use the default *BEF* proposed by the IPCC good practice guidance for LULUCF, specifically for tropical broad-leaved species, in order to obtain a conservative estimate of total biomass.
- 43. *SV* shall be estimated from on-site measurements using the appropriate parameters (such as DBH or DBH and height). Consistent application of BEF should be secured on the definition of stem volume (e.g. total stem volume or thick wood stem volume requires different BEFs).
- 44. Documented local values for *WD* should be used. In the absence of such values, national default values should be used. If national values are also not available, the values should be obtained from table 3A.1.9 of the IPCC good practice guidance for LULUCF.

For below-ground biomass

45. $P_{B(t)}$ shall be estimated for each stratum *i* as follows:

$$P_{B(t)} = E_{(t)} * R * 0.5 (16)$$

where:

 $P_{B(t)}$ = carbon stocks in below-ground biomass at time t achieved by the project activity during the monitoring interval (t C/ha)

R = root to shoot ratio (dimensionless)

0.5 = carbon fraction of dry matter (t C/t dm)

- 46. Documented national values for *R* should be used. If national values are not available, the values should be obtained from table 3A.1.8 of the IPCC good practice guidance for LULUCF.
- 47. If root to shoot ratios for the species concerned are not available, project proponents shall use the allometric equation developed by Cairns et al. (1997) or a more representative equation taken from the IPCC good practice guidance for LULUCF, Table 4.A.4:⁵

⁵ Cairns, M.A., S. Brown, E.H. Helmer, G.A. Baumgardner (1997). Root biomass allocation in the world's upland forests. *Oecologia* (1):1–11.

$$P_{B(t)} = \exp(-1.085 + 0.9256 * \ln E_{(t)}) * 0.5$$
(17)

where:

 $P_{B(t)}$ = carbon stocks in below-ground biomass at time t achieved by the project activity during the monitoring interval (t C/ha)

 $E_{(t)}$ = estimate of above-ground biomass at time t achieved by the project activity (t dm/ha)

0.5 = carbon fraction of dry matter (t C/t dm)

C. Ex post estimation of leakage

- 48. In order to estimate leakage, project participants shall monitor, for each monitoring period, each of the following indicators:
 - (a) Percentage of families/households of the community involved in or affected by the project activity displaced due to the implementation of the project activity;
 - (b) Percentage of total production of the main produce (for example meat or corn) within the project boundary displaced due to the project activity.
- 49. If the value of both of these two indicators for the specific monitoring period is lower than 10 per cent, then

$$L_{(t)} = 0 ag{18}$$

where:

 $L_{(t)}$ = Leakage attributable to the project activity within the project boundary at time t (t C)

50. If the value of either of these two indicators is higher than 10 per cent and less than or equal to 50 per cent, then leakage shall be equal to 15 per cent of the actual net GHG removals by sinks, that is:

$$L_{(i)} = P_{(i)} * 0.15 (19)$$

where:

 $L_{(t)}$ = Leakage attributable to the project activity within the project boundary at time t (t C)

 $P_{(t)}$ = Carbon stocks in the living biomass pools within the project boundary at time t under project scenario (t C)

- As indicated in chapter I, paragraph 4, if the value of either of these two indicators is larger than 50 per cent net anthropogenic GHG removals by sinks cannot be estimated.
- 52. If project participants consider that the use of fertilizers would be significant, leakage of N₂O emissions (>10 per cent of the net anthropogenic removals by sinks) should be estimated in accordance with the IPCC good practice guidance.

D. Ex post estimation of the net anthropogenic GHG removals by sinks

53. Net anthropogenic greenhouse gas removals by sinks is the actual net greenhouse gas removals by sinks minus the baseline net greenhouse gas removals by sinks minus leakage.

CDM APWC

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 11

54. The resulting tCERs at the year of verification tv are calculated as follows:

$$tCER_{(tv)} = 44/12 * (P_{(tv)} - B_{(tv)} - L_{(tv)})$$
 (20)

if the changes in carbon stock in the baseline are considered to be zero, then $B_{(tv)} = B_{(t=0)}$ and

$$L_{(tv)} = 0.15 * P_{(tv)}$$
 (if required; see paragraph 50)

55. The resulting ICERs at the year of verification tv are calculated as follows:

$$lCER_{(tv)} = 44/12 * [(P_{(tv)} - P_{(tv-\kappa)}) - L_{(tv)}]$$
(21)

$$L_{(tv)} = 0.15 * (P_{(tv)} - P_{(tv-\kappa)})$$
 (if required; see paragraph 50)

$$P_{(tv-\kappa)} = P_{(t=0)} = B_{(t=0)}$$
 for the first verification

where:

 $tCER_{(tv)}$ = tCERs emitted at year of verification tv (t CO₂)

 $lCER_{(tv)}$ = lCERs emitted at year of verification tv (t CO₂)

 $P_{(tv)}$ = carbon stocks in the living biomass pools within the project boundary at year of verification

tv under project scenario (t C)

 $B_{(tv)}$ = carbon stock in the living biomass pools within the project boundary at year of verification tv

that would have occurred in the absence of the project activity (t C)

 $L_{(tv)}$ = leakage attributable to the project activity within the project boundary at year of verification

tv (t C)

tv = year of verification

 κ = time span between two verifications

44/12 = conversion factor from t C to t CO_2 equivalent (t CO_2/t C)

E. Monitoring frequency

56. A five-year monitoring frequency of the permanent sample plots established within the project boundary is needed for an appropriate monitoring of above-ground and below-ground biomass.

E. Data collection

57. Data collection shall be organized taking into account the carbon pools measured, the sample frame used and the number of permanent plots to be monitored in accordance with the section on quality assurance/quality control (QA/QC) below. Tables 1 and 2 outline the data to be collected to monitor the actual net GHG removals by sinks and leakage.

F. Quality control and quality assurance

- 58. As stated in the IPCC good practice guidance LULUCF (page 4.111), monitoring requires provisions for quality assurance (QA) and quality control (QC) to be implemented via a QA/QC plan. The plan shall become part of project documentation and cover procedures as described below for:
 - (a) Collecting reliable field measurements;
 - (b) Verifying methods used to collect field data;
 - (c) Verifying data entry and analysis techniques;

(d) Data maintenance and archiving. This point is especially important, also for small-scale A/R CDM project activities, as timescales of project activities are much longer than those of technological improvements of electronic data archiving. Each point of importance for small-scale A/R CDM project activities is treated in the following section.

G. Procedures to ensure reliable field measurements

- 59. Collecting reliable data from field measurements is an important step in the quality assurance plan. Those responsible for the measurement work should be trained in all aspects of the field data collection and analysis. It is good practice to develop standard operating procedures (SOPs) for each step of the field measurements, which should be adhered to at all times. These SOPs describe in detail all steps of the field measurements and contain provisions for documentation for verification purposes so that future field personnel can check past results and repeat the measurements in a consistent fashion. To ensure the collection and maintenance of reliable field data, it is good practice to ensure that:
 - (a) Field-team members are fully aware of all procedures and the importance of collecting data as accurately as possible;
 - (b) Field teams install test plots if needed in the field and measure all pertinent components using the SOPs to estimate measurement errors;
 - (c) The document will list all names of the field team and the project leader will certify that the team is trained:
 - (d) New staff are adequately trained.

H. Procedures to verify field data collection

- 60. To verify that plots have been installed and the measurements taken correctly, it is good practice to remeasure independently every 10 plots and to compare the measurements. The following quality targets should be achieved for the remeasurements, compared to the original measurements:
 - (a) Missed or extra trees: no error within the plot
 - (b) Tree species or groups: no error
 - (c) DBH: $< \pm 0.5$ cm or 3 % whichever is greater
 - (d) Height: < + 10/ and 20%
- 61. At the end of the field work 10–20 per cent of the plots shall be checked independently. Field data collected at this stage will be compared with the original data. Any errors found should be corrected and recorded. Any errors discovered should be expressed as a percentage of all plots that have been rechecked to provide an estimate of the measurement error.

I. Procedures to verify data entry and analysis

62. In order to obtain reliable estimates data must be entered into the data analysis spreadsheets correctly. Errors in this process can be minimized if the entry of field data and laboratory data are cross-checked and, where necessary, internal tests are incorporated into the spreadsheets to ensure that the data are realistic. All personnel involved in measuring and analysing data should communicate to resolve any apparent anomalies before the final analysis of the monitoring data is completed. If there are any problems with the monitoring plot data that cannot be resolved, the plot should not be used in the analysis.

UNFCCC

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 13

J. Data maintenance and storage

- 63. Due to the long-term nature of A/R project activities under the CDM, data archiving (maintenance and storage) is an important component of the work. Data archiving should take several forms and copies of all data should be provided to each project participant.
- 64. The following shall be stored in a dedicated and safe place, preferably offsite:
 - (a) Copies (electronic and/or paper) of all field data, data analyses, and models; estimates of the changes in carbon stocks and corresponding calculations and models used;
 - (b) Any geographical information system (GIS) products;
 - (c) Copies of the measuring and monitoring reports.
- 65. Given the time frame over which the project activity will take place and the pace of updating of software and hardware for storing data, it is recommended that the electronic copies of the data and the report be updated periodically or converted to a format that could be accessed by any future software application.

Table 1. Data to be collected or used in order to monitor the verifiable changes in carbon stock in the carbon pools within the project boundary from the proposed afforestation and reforestation project activity under the clean development mechanism, and how these data will be archived

Data variable	Source	Data unit	Measured, calculated or estimated	Frequency (years)	Proportion	Archiving	Comment
Location of	Field survey or	Latitude	Measured	5	100 per	Electronic,	GPS can be used
the areas	cadastral	and	ivicasured	3	cent	paper,	for field survey
where the	information or	longitude			Cent	paper, photos	for field survey
project	aerial	longitude				pilotos	
activity has	photographs or						
been	satellite imagery						
implemented	Saterific illiagery						
Ai - Size of	Field survey or	ha	Measured	5	100 per	Electronic,	GPS can be used
the areas	cadastral	11a	ivicasured	3	cent	paper,	for field survey
where the	information or				Cent	paper, photos	101 field survey
project	aerial					photos	
activity has	photographs or						
been	satellite imagery						
implemented	or GPS						
for each type	01 01 0						
of strata							
Location of	Project maps	Latitude	Defined	5	100 per	Electronic,	Plot location is
the permanent	and project	and			cent	paper	registered with a
sample plots	design	longitude				1 1	GPS and marked
1 1							on the map
Diameter of	Permanent plot	cm	Measured	5	Each tree in	Electronic,	Measure diameter
tree at breast					the sample	paper	at breast height
height					plot		(DBH) for each
(1.30 m)							tree that falls
							within the sample
							plot and applies
							to size limits
Height of tree	Permanent plot	m	Measured	5	Each tree in	Electronic,	Measure height
					the sample	paper	(H) for each tree
					plot		that falls within
							the sample plot
							and applies to
D : 1	D .		T (1		2 1	E1	size limits
Basic wood	Permanent	tonnes of	Estimated	Once	3 samples	Electronic,	
density	plots, literature	dry matter			per tree	paper	
		per m ³ fresh			from base,		
		11 0011			middle and top of the		
		volume			stem of		
					three		
					individuals		
					marviduais		

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 15

Total CO ₂	Project activity	Mg	Calculated	5	All project	Electronic	Based on data
					data		collected from all
							plots and carbon
							pools

Table 2. Data to be collected or used in order to monitor leakage and how these data will be archived

Data variable	Source	Data unit	Measured, calculated or estimated	Frequency (years)	Proportion	Archiving	Comment
Percentage of families/ households of the community involved in or affected by the project activity displaced due to the implementation of the project activity	Participatory survey	Number of families or households	Estimated	5	per cent	Electronic	
Percentage of total production of the main produce (e.g. meat, corn) within the project boundary displaced due to the CDM A/R project activity.	Survey	Quantity (volume or mass)	Estimated	5	per cent	Electronic	

Abbreviations and parameters (in order of appearance):

Parameter or abbreviation	Refers to	Units
$B_{(t)}$	Carbon stocks within the project boundary at time <i>t</i> that would have occurred in the absence of the project activity	t C
$B_{A(t) i}$	Carbon stocks in above-ground biomass at time <i>t</i> of stratum <i>i</i> that would have occurred in the absence of the project activity	t C/ha
$B_{B\ (t)\ i}$	Carbon stocks in below-ground biomass at time <i>t</i> of stratum <i>i</i> that would have occurred in the absence of the project activity	t C/ha
A_i	Project area of stratum i	ha
$M_{(t)}$	Above-ground biomass at time <i>t</i> that would have occurred in the absence of the project activity	t dm/ha
0.5	Factor to convert tonnes of biomass (dry matter) to tonnes carbon	t C/t dm

Parameter or abbreviation	Refers to	Units
m	Time to maturity of the woody perennial vegetation	Time
R	Root to shoot ratio	t dm/t dm
$N_{(t)}$	Carbon stocks within the project boundary at time t under project scenario	t C
$N_{A(t)\ i}$	Carbon stocks in above-ground biomass at time t of stratum i from project scenario	t C/ha
$N_{B(t)\ i}$	Carbon stocks in below-ground biomass at time <i>t</i> of stratum <i>i</i> from project scenario	t C/ha
$T_{(t)}$	Above-ground biomass at time t for the project scenario	t dm/ha
$SV_{(t)}$	Stem volume at time t for the project scenario	m³/ha
WD	Basic wood density	t of dm/m³ (fresh volume)
BEF	Biomass expansion factor (over bark) from stem volume to total volume	Dimensionless
L_t	Leakage for the project scenario at time t	t C
$P_{(t)}$	Carbon stocks within the project boundary at time <i>t</i> achieved by the project activity	t C
$P_{A(t)i}$	Carbon stock in above-ground biomass at time <i>t</i> of stratum <i>i</i> achieved by the project activity	t C/ha
$P_{B(t) i}$	Carbon stocks in below-ground biomass at time <i>t</i> of stratum <i>i</i> achieved by the project activity during the monitoring interval	t C/ha
$E_{(t)}$	Above-ground biomass at time t achieved by the project activity	t of dm/ha
DBH	Diameter at breast height (130 cm or 1.30 m)	cm or m
$L_{p(t)}$	Leakage resulting from the project activity at time t	t C

Appendix A

Demonstration of land eligibility

- 1. Land to be reforested shall be demonstrated to have been non-forest since 1 January 1990, using the forest definition (numerical values for crown cover, tree height, minimum area, and minimum width as selected by the designated national authority). In order to demonstrate the eligibility of land for afforestation and reforestation, project proponents shall demonstrate that the land did not meet the definition of forest around 1990, and before the project activity starts. In doing so, care must be taken that bare land could be a forest, if the continuation of current land use would lead to a future status where the forest definition thresholds could be exceeded.
- 2. Project participants shall explain in the clean development mechanism small-scale afforestation and reforestation project design document (SSC-AR-PDD) why the land is eligible and provide one of the following as supporting evidence:
 - (a) Aerial photographs or satellite imagery complemented by ground reference data;
 - (b) Ground-based surveys (land-use permits, land-use plans or information from local registers such as cadastre, owners register, land-use or land-management register).
- 3. If the options in paragraph 2 are not available/applicable, project participants shall submit a written testimony which was produced by following a participatory rural appraisal methodology.

¹ According to decision 11/CP.7, annex, paragraph 1.c "for the first commitment period, reforestation activities will be limited to reforestation occurring on those lands that did not contain forest on 31 December 1989 and were not temporarily unstocked".

Appendix B

Assessment of additionality

- 1. Project participants shall provide an explanation to show that the project activity would not have occurred anyway due to at least one of the following barriers:
- 2. **Investment barriers, other than economic/financial barriers**, inter alia:
 - (a) Debt funding not available for this type of project activity;
 - (b) No access to international capital markets due to real or perceived risks associated with domestic or foreign direct investment in the country where the project activity is to be implemented;
 - (c) Lack of access to credit.
- 3. **Institutional barriers**, inter alia:
 - (a) Risk relating to changes in government policies or laws;
 - (b) Lack of enforcement of legislation relating to forest or land-use.
- 4. **Technological barriers**, inter alia:
 - (a) Lack of access to planting materials;
 - (b) Lack of infrastructure for implementation of the technology.
- 5. **Barriers relating to local tradition**, inter alia:
 - (a) Traditional knowledge or lack thereof, of laws and customs, market conditions, practices;
 - (b) Traditional equipment and technology;
- 6. **Barriers due to prevailing practice**, inter alia:
 - (a) The project activity is the "first of its kind". No project activity of this type is currently operational in the host country or region.
- 7. **Barriers due to local ecological conditions**, inter alia:
 - (a) Degraded soil (e.g. water/wind erosion, salination);
 - (b) Catastrophic natural and/or human-induced events (e.g. land slides, fire);
 - (c) Unfavourable meteorological conditions (e.g. early/late frost, drought);
 - (d) Pervasive opportunistic species preventing regeneration of trees (e.g. grasses, weeds);
 - (e) Unfavourable course of ecological succession;
 - (f) Biotic pressure in terms of grazing, fodder collection, etc.

UNFCCC

AR-AMS0001 / Version 02 Sectoral Scope 14 06 October 2006 page 19

8. **Barriers due to social conditions**, inter alia:

- (a) Demographic pressure on the land (e.g. increased demand on land due to population growth);
- (b) Social conflict among interest groups in the region where the project activity takes place;
- (c) Widespread illegal practices (e.g. illegal grazing, non-timber product extraction and tree felling);
- (d) Lack of skilled and/or properly trained labour force;
- (e) Lack of organization of local communities.

Appendix C Default allometric equations for estimating above-ground biomass

Annual	DBH			Author			
rainfall	limits	Equation	\mathbb{R}^2				
Broad-leaved species, tropical dry regions							
<900 mm	3–30 cm	$AGB = 10^{-3.535} + \log_{10}(\pi *DBH^{2}/4)$	0.94	Martinez-Yrizar et al. (1992)			
900-1500 mm	5–40 cm	$AGB = exp\{-1.996 + 2.32 * ln(DBH)\}$	0.89	Brown (1997)			
Broad-leaved spe	cies, tropical	humid regions					
< 1500 mm	5–40 cm	AGB = 34.4703 - 8.0671*DBH + 0.6589*(DBH2)	0.67	Brown et al. (1989)			
1500–4000 mm	< 60 cm	$AGB = exp\{-2.134 + 2.530 * ln(DBH)\}$	0.97	Brown (1997)			
1500–4000 mm	60–148 cm	$AGB = 42.69 - 12.800*(DBH) + 1.242*(DBH)^{2}$	0.84	Brown et al. (1989)			
1500–4000 mm	5–130 cm	$AGB = exp\{-3.1141 + 0.9719*ln(DBH^2*H)$	0.97	Brown et al. (1989)			
1500–4000 mm	5–130 cm	$AGB = exp\{-2.4090 + 0.9522*ln(DBH^2*H*WD)\}$	0.99	Brown et al. (1989)			
Broad-leaved spe	cies, tropical	wet regions					
> 4000 mm	4–112 cm	AGB = 21.297 - 6.953*(DBH) + 0.740*(DBH2)	0.92	Brown (1997)			
> 4000 mm	4–112 cm	$AGB = exp\{-3.3012 + 0.9439*ln(DBH^2*H)\}$	0.90	Brown et al. (1989)			
Coniferous trees							
n.d.	2–52 cm	$AGB = exp\{-1.170 + 2.119*ln(DBH)\}$	0.98	Brown (1997)			
Palms							
n.d.	> 7.5 cm	AGB = 10.0 + 6.4 * H	0.96	Brown (1997)			
n.d.	> 7.5 cm	AGB = 4.5 + 7.7 * WDH	0.90	Brown (1997)			

Note: AGB = above-ground biomass; DBH = diameter at breast height; H = height; WD = basic wood density *References:*

Brown, S. 1997. *Estimating biomass and biomass change of tropical forests. A primer*. FAO Forestry Paper 134. Food and Agriculture Organization of the United Nations, Rome, Italy.

Brown, S., A.J.R. Gillespie, and A.E. Lugo. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. *Forest Science* 35: 881–902.

Martínez-Y., A.J., J. Sarukhan, A. Perez-J., E. Rincón, J.M. Maas, A. Solis-M, and L. Cervantes. 1992. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, Mexico. *Journal of Tropical Ecology* 8: 87–96.

_ _ _ _