Solid Lubricants and Nanotribology

Fernando Lázaro Freire Jr. *Departamento de Física,* PUC-Rio

Solid Lubricants

C-C $sp^2 \rightarrow$ interatomic distancee: 1.42 Å Distance between planes: 3.35 Å Boric acid: H₃BO₃

Distance between planes : 3.18 Å

Surf. Eng. 15, 291 (1999)

Cathode rays tubes

Macroscopic friction

AMONTON Laws (1698):

- Friction is independent on the contact area.
- Friction is independent on the velocity.
- Friction is proportional to the normal force

 $\mu = F_{F/}/F_{N}$

AFM: Nanotribology

Stick and slip

2 x 2 nm²

Dark-light: 1.6 µN

C.M. Mate et al, PRL 59 (1987) 1942

Tip movement

$$\begin{split} m \frac{\partial^2 x}{\partial t^2} &= k_x (X - x) - \frac{\partial U_{\text{BA}}(x, y)}{\partial x} - \gamma \frac{\partial x}{\partial t} ,\\ m \frac{\partial^2 y}{\partial t^2} &= k_y (Y - y) - \frac{\partial U_{\text{BA}}(x, y)}{\partial y} - \gamma \frac{\partial y}{\partial t} , \end{split}$$

$$U_{\text{BA}}(x, y) = U_0 \left[\cos\left(\frac{2\pi x}{a_x}\right) \cos\left(\frac{2\pi y}{a_y}\right) \right].$$

A.R. Rivas, R. Prioli, R.M. Zamora, Ultramicroscopy 97 (2003) 315 Stick and slip amorphous surfaces

R. Prioli, A.R. Rivas, F.L. Freire Jr., Appl. Phys. A 76 (2003) 565 Dependence with velocity and normal force

Nanotribology applications

Energy dissipation processes Adhesion forces

MEMS and NEMS

Hard magnetic disks

Hard magnetic disks: road map

http://www.almaden.ibm.com/st/projects/lubricants/

Metrology of 1–10 nm thick CN_x films: Thickness, density, and surface roughness measurements

a-CN_x films deposited by pulsed dc magnetron sputtering

Dejun Li, Yanfeng Chen, Yip-Wah Chung, F. L. Freire Jr. J. Vac. Sci. Technol. A 21 (2003) L19

Carbon-based films:

Influence of humidity and velocity

- AFM calibration.
- hidrofilic and hidrofobic surfaces.
- results.

R. Prioli. M.E. H. Maia da Costa, F.L. Freire Jr., Tribology Letters 15 (2003) 177

R.M.R. Zamora, C. S. Tasayco, R. Prioli, F.L. Freire Jr., Phys. Stat. Sol. A 201 (2004) 550; Surface Science (submitted)

Influence of surface wettability

0.8

Hydrophilic mica

Hydrophobic amorphous carbon

_ateral force (nN)

Friction model

Volume 88, Number 18

PHYSICAL REVIEW LETTERS

6 May 2002

Kinetics of Capillary Condensation in Nanoscopic Sliding Friction

Elisa Riedo,1 Francis Lévy,2 and Harald Brune1

¹Institut de Physique des Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ²Institut de Physique de la Matière Complexe, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (Received 20 December 2001; published 18 April 2002)

$$\begin{split} F_{\rm F} &= \mu (F_{\rm N} + F_{\rm ss}) + \mu [F_{\rm c} f(t)] + m \ln \left(\frac{v}{v_{\rm B}}\right) \\ &= \mu (F_{\rm N} + F_{\rm ss}) - \mu [2\pi R_{\rm t} \gamma (\cos\theta_{\rm s} + \cos\theta_{\rm t})] \\ &\times \left(\frac{1}{\lambda A \rho} \frac{1}{\ln \frac{F_{\rm s}}{P}}\right) \ln \frac{v}{v_{\rm A}} + m \ln \left(\frac{v}{v_{\rm B}}\right), \end{split}$$

$$F_L = \mu F_N + [m - \alpha F_C] \ln(v)$$

Conclusions:

• The velocity dependence of friction is strongly influenced by the capillary condensation of water.

• The friction can be correlated with the surface hydrophobicity.

Wear at nanometer scale

Films:

→ deposited by PECVD in C_2H_2 -CF₄ atmosphere: a-C:H and a-C:F a-C:H Hardness → 20 GPa; sp³/sp² ~ 1; H = 20 at.%

a-C:F Hardness \rightarrow 5 GPa; F = 23 at.%

 \rightarrow deposited by filtered arc: ta-C and nanostructured carbon films

ta-C Hardness \rightarrow 80 GPa; sp³/sp² ~ 4 ns-C Hardness \rightarrow ? (high elastic recovery); sp³/sp² ~ 0 F.L. Freire Jr., R. Prioli, M. Chowala, Diamond and Related Materials, 12 (2003) 2195

Scratch test

F.L. Freire Jr., R. Prioli, M. Chowala, Diamond and Related Materials, 12 (2003) 2195

nanolitography

scheme

Atomic force microscopy of InAs on InP

Distance between points ~ 50 nm

Defects induced by AFM tip on the surface of InP

InAs quantum dots grown onto InP

Prof. Rodrigo Prioli

Dra. Valéria Nunes

PHd students:

Marcelo Eduardo H. Maia da Costa Robert Zamora Henrique Fonseca Filho Cristiano Camacho Paola Ayala Carlos Sanchez Tasayco

M MSc student:

Clara Muniz

Collaborators:

Prof. Gino Mariotto (Università di Trento, Italia) Prof. Manish Chowala (Rutgers University, USA) Prof. Yip Wah Chung (Northwestern University, USA)

CNPq, CAPES and FAPERJ

In order to fit our experimental data with Riedo's model we need to calculate or measure the parameters v_a , v_b , m, P_s, P etc.

$$v_a = \frac{2a}{t_a}$$
 (contact diameter)
(time to built up a capillary bridge 25 µs)

a is obtained with the use of the Johnson-Kendal-Robertson

$$F_{ad} = -\frac{3}{2}\pi R W_{12}$$

$$\frac{1}{E} = \frac{(1 - v_{tip}^{2})}{E_{tip}} + \frac{(1 - v_{s}^{2})}{E_{s}}$$

 $a^{3} = \frac{R}{E} \Big[F + 3\pi R W_{12} + \sqrt{6\pi R W_{12} F + (3\pi R W_{12})^{2}} \Big]$

Calibração de Força Lateral

	μ ΜΙϹΑ	μ HOPG
PUC	0.062	0.009
LIU [1]	0.095	0.011
ELISA [2]		0.009
RUAN [3]		0.006
LABARDI [4]	0.027	0.013
WARMACK [5]	0.086	
Average	0.068	0.01
σ	0.034	0.002

[1] - E.Liu et.al., Wear 192,141 (1996)	
[2]- E.Riedo et. al., Surface Sci. 477, 25 (2001)	
[3] - J.A.Ruan et. al., J. of Tribology 116, 378 (1994)	
[4] - M.Labardi et.al., Appl. Phys. A 59, 3 (1994)	
[5] - R. J. Warmack et. al., Rev. Sic. Instrum. 65, 394 (1994)	

STM –UHV Si reconstructed 7x7

AFM dots

Tribologia

 $F_{c} = 2\pi R_{t} \gamma_{L} (\cos (\theta_{s}) + \cos (\theta_{t}))$

Films deposited by rf-PECVD using C₂H₂-CF₄ mixtures

C ₂ H ₂ partial		Compo _{(at.}	Atomic		
pressure					density
(%)	С	н	F	0	(10 ²³ atoms/cm ³)
100	77	22	0	1	1.3
90	76	21	2	1	1.2
77	74	15	10	1	1.1
50	73	4	22	1	0.9
33	70	2	23	5	0.7
25	60	2	35	3	0.6
20	60	2	35	3	0.7

Chemical composition and atomic density by IBA

← F = 10 at.%

____ F = 35 at.%

Cantilever calibration

Ņ	EAFM Van d	e Graaff			
File Method Help					
Tip Material ◯ Si ⊙ Si3N4		● Si3N4	Constants Values (N/m) Ky : 215,274		
	L (um)	190,7	Kz: 0,06267		
	h (um)	3,3	Cn: -11,5205		
	t (um)	0,72			
	w (um)	26,03	Reset Source Table		
	a (deg)	26,68			
	d (um)	9,68	Calculate Constants		

E. Liu, B. Banplain, J.P. Celis, Wear 192 (1996) 141

Lateral force (nN)

