

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

Revised Approved afforestation and reforestation baseline methodology AR-AM0001

"Reforestation of degraded land"

Source

This methodology is based on the draft CDM-AR-PDD "Facilitating Reforestation for Guangxi Watershed Management in Pearl River Basin, China" whose baseline study, monitoring and verification plan and project design document were prepared by the Institute of Forest Ecology and Environment, the Chinese Academy of Forestry, Joanneum Research (Austria), Guangxi Forestry Inventory and Design, (China), and World Bank reviewers. For more information regarding the proposal and its consideration by the Executive Board please refer to case ARNM0010: "Facilitating Reforestation for Guangxi Watershed Management in Pearl River Basin, China" on http://cdm.unfccc.int/methodologies/ARmethodologies/approved ar.html.

Section I. Summary and applicability of the baseline and monitoring methodologies

1. Selected baseline approach from paragraph 22 of the CDM A/R modalities and procedures

"Existing or historical, as applicable, changes in carbon stocks in the carbon pools within the project boundary."

2. Applicability

This methodology is applicable to project activities with the following conditions:

- The project activity does not lead to a shift of pre-project activities outside the project boundary, i.e. the land under the proposed A/R CDM project activity can continue to provide at least the same amount of goods and services as in the absence of the project activity;
- Lands to be reforested are severely degraded with the vegetation indicators (tree crown cover and height) below thresholds for defining forests, as communicated by the DNA consistent with decision 11/CP.7 and 19/CP.9, and the lands are still degrading;
- Environmental conditions and human-caused degradation do not permit the encroachment of natural forest vegetation;
- Lands will be reforested by direct planting and/or seeding;
- Site preparation does not cause significant longer term net emissions from soil carbon;
- Plantation may be harvested with either short or long rotation and will be regenerated either by direct planting or natural sprouting:
- Carbon stocks in soil organic matter, litter and deadwood can be expected to decrease more due to soil erosion and human intervention or increase less in the absence of the project activity, relative to the project scenario;
- Grazing will not occur within the project boundary in the project case;
- The application of the procedure for determining the baseline scenario in section II.4 leads to the conclusion that the baseline approach 22(a) (existing or historical changes in carbon stocks in the carbon pools with the project boundary) is the most appropriate choice for determination of the baseline scenario and that the land would remain degraded in the absence of the project activity.

Sectoral Scope: 14 19 May 2006

3. Selected carbon pools:

Table 1: Selection and justification of carbon pools

Carbon Pools	Selected (answer with yes or no)	Justification / Explanation
Above ground	Yes	Major carbon pool subjected to the project activity
Below ground	Yes	Major carbon pool subjected to the project activity
Dead wood	No	Conservative approach under applicability condition
Litter	No	Conservative approach under applicability condition
Soil organic carbon	No	Conservative approach under applicability condition

4. Summary of baseline and monitoring methodologies

Baseline methodology steps:

The methodology is applicable for a proposed A/R project activity on degraded and degrading abandoned land.

The eligibility of land as an A/R CDM project activity is demonstrated using archives and/or maps of land use/cover and/or satellite image around 1990 and for a recent date before the start of the A/R CDM project activity, as well as a supplementary survey of land use in cases where land cover alone is not sufficient to distinguish between forest and non-forest (e.g., bare land that may be forest due to forest regeneration under way). This methodology applies approach 22(a) as a general baseline approach for the proposed A/R CDM project activity, taking into account historic land use/cover changes, national, local and sectoral policies that influence land use within the boundary of the proposed A/R CDM project activity, economical attractiveness of the project relative to the baseline, and barriers for implementing project activities in absence of CDM finance.

The proposed A/R CDM project area is stratified based on local site classification map/table, the most updated land use/cover maps and/or satellite image, soil map, vegetation map, landform map as well as supplementary surveys, and the baseline scenario is determined separately for each stratum. For strata without growing trees, this methodology conservatively assumes that the carbon stock in above-ground and below-ground biomass would in the absence of the project activity remain constant, i.e., the baseline net GHG removals by sinks are zero. For strata with a few growing trees, the baseline net GHG removals by sinks are estimated based on methods in GPG-LULUCF¹. Only the carbon stock changes in above-ground and below-ground biomass (in living trees) are estimated. The omission of the other pools (soil organic matter, dead wood and litter) is considered to be conservative because it can be justified that these other pools would decrease more or increase less in the absence of the proposed A/R CDM project activity, relative to the project scenario. The loss of non-tree living biomass on the site due to competition from planted trees or site preparation is accounted as a emission within the project boundary, in a conservative manner.

_

¹ Throughout this document, "GPG-LULUCF" means the Good Practice Guidance for Land Use, Land Use Change and Forestry from the Intergovernmental Panel on Climate Change (2003). This document is available at the following URL: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm.

UNFCCC/CCNUCC

CDM - Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

This methodology uses the latest version of the "Tool for the demonstration and assessment of additionality for afforestation and reforestation CDM project activities" approved by the CDM Executive Board².

Monitoring methodology steps:

This methodology includes the following elements:

- The overall performance of the proposed A/R CDM project activity, including the integrity of the project boundary and the success of forest establishment and forest management activities;
- The actual net GHG removals by sinks, increase in GHG emissions within the project boundary due to nitrogen fertilization, machinery use in site preparation, thinning and logging, removing of existing non-tree vegetation and biomass burning in any slash and burn site preparation;
- Leakage due to vehicle use for transportation staff, seedlings, timber and non forest products, as a result of the implementation of the proposed A/R CDM project activity;
- A Quality Assurance/Quality Control plan, including field measurements, data collection verification, data entry and archiving, as an integral part of the monitoring plan of the proposed A/R CDM project activity, to ensure the integrity of data collected and improve the monitoring efficiency.

The baseline net GHG removals by sinks does not need to be measured and monitored over time. However, the methodology checks and re-assesses these assumptions if a renewal of the crediting period is chosen. This methodology stratifies the project area based on local climate, existing vegetation, site class and tree species and/or years to be planted with the aid of land use/cover maps, satellite images, soil map, GPS and field survey. This methodology uses permanent sample plots to monitor carbon stock changes in living biomass pools. The methodology first determines the number of plots needed in each stratum/sub-stratum to reach the targeted precision level of $\pm 10\%$ of the mean at the 95% confidence level. GPS is used to locate plots.

Section II. Baseline methodology description

1. Eligibility of land

The eligibility of land is treated under the 'additionality section' below.

2. Project boundary

The A/R CDM project activity may contain more than one discrete parcel of land. Each discrete parcel of land shall have a unique geographical identification. The boundary shall be defined for each discrete parcel. The discrete parcels of lands may be defined by polygons, and to make the boundary geographically verifiable and transparent, the GPS coordinate for all corners of each polygon shall be measured, recorded, archived and listed as an attachment of the CDM-AR-PDD.

Furthermore, the project boundary includes the emission sources and gases listed in the table below.

² Throughout this document, "A/R additionality tool" refers to the document approved by the Executive Board of the CDM and available at http://cdm.unfccc.int/methodologies/ARmethodologies/approved_ar.html.

3

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

Table 2: Gases considered from emissions by sources other than resulting from changes in carbon pools:

Source	Gas	Included/ excluded	Justification / Explanation
Duming of fossil	CO_2	Included	
Burning of fossil fuels	CH_4	Excluded	Potential emission is negligibly small
14015	N ₂ O	Excluded	Potential emission is negligibly small
Daning of	CO_2	Included	However accounted as part of changes in carbon pools
Burning of biomass	CH ₄	Included	
oromass	N ₂ O	Included	
	CO_2	Excluded	Not applicable
Use of fertilizers	CH ₄	Excluded	Not applicable
	N ₂ O	Included	

3. Ex-ante stratification

In general, the ex-ante stratification may be different from the ex-post stratification, however, they the procedures set out in section III.2, "Stratification and sampling for ex-post calculations", should also be applied for ex-ante stratification.

4. Procedure for selection of most plausible baseline scenario

Project participants should determine the most plausible baseline scenario with the following steps:

Step 1: Identify and list plausible alternative land uses including alternative future public or private activities on the degraded lands such as any similar A/R activity or any other feasible land development activities, considering relevant national and or sectoral land-use policies that would impact the proposed project area, and land records, field surveys, data and feedback from stakeholders, and other appropriate sources.

Step 2: Demonstrate that under the plausible scenarios identified in Step 1, the most plausible scenario is that the project areas would remain abandoned and degrading in absence of the project activity, by assessing the attractiveness of the plausible alternative land uses in terms of benefits to the project participants, consulting with stakeholders for existing and future land use, and identifying barriers for alternative land uses. This can be done in at least one of the following ways:

- Generally: By demonstrating that similar lands, in the vicinity, are also not, and are not planned to be used for these alternative land uses. Show that apparent financial and/or other barriers, which prevent alternative land uses can be identified;
- Specifically for a forest as alternative land use: Apply step 2 (investment analysis) or step 3 (barrier analysis) of the A/R "Tool for the demonstration and assessment of additionality", to demonstrate that this land use, in absence of the CDM, is unattractive;
- Specifically for any agricultural alternative land uses: Demonstrate that the project lands are legally restricted to forestry purposes only, and that these restrictions are generally complied with in the vicinity of the project area. Alternatively, use step 2 of the A/R "Tool for the demonstration and assessment of additionality" to demonstrate that alternative agricultural land uses are financially non-viable.

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

Step 3: To support the findings above, demonstrate that the lands to be planted³ are really "degraded":

Analyze the historical and existing land use/cover changes in a social-economic context and identify key factors that influence the land use/cover changes over time, using multiple sources of data including archives, maps and/or satellite images of land use/cover around 1990 and before the start of the proposed A/R CDM project activity, supplementary field investigation, land-owner interviews, as well as collection of data from other sources. The historical degradation feature can be indicated by assessing one of the following indicators:

- Vegetation degradation, e.g.,
 - The crown cover of non-tree vegetation has decreased in the recent past for reasons other than sustainable harvesting activities;
- Soil degradation, e.g.,
 - Soil erosion has increased between two time points in the recent past;
 - Soil organic matter content has decreased between two time points in the recent past.

In addition, demonstrate that no natural encroachment of trees would occur by,

- Demonstration of lack of on-site seed pool that may results in natural regeneration;
- Demonstration of lack of external seed sources that may result in natural regeneration;
- Demonstration of lack of possibility of seed sprouting and growth of young trees;
- Demonstration of lack of possible natural regeneration activity, by use of supplementary surveys on the project areas as well as similar surrounding areas for two different years that cover a minimum time period of ten years;
- Any other evidence that demonstrates the impossibility of natural encroachment in a credible and verifiable way.

Demonstrate that national and/or sectoral land-use policies or regulations that create policy driven market distortions which give comparative advantages to afforestation/reforestation activities and that have been adopted before 11 November 2001 do not influence the areas of the proposed A/R CDM project activity (e.g., because the policy is not implemented, the policy does not target this area, or because there are prohibitive barriers to the policy in this area, etc⁴. If the policies (implemented before 11 Nov 2001) significantly impact the project area, then the baseline scenario cannot be "degraded land" and this methodology cannot be used.

This methodology is not applicable if project proponents can not clearly show in the application of Steps 1 to 3 that the baseline approach 22(a) (existing or historical changes in carbon stocks in the carbon pools with the project boundary) and the scenario "lands to be planted are degraded lands and will continue to degrade in absence of the project" is the most appropriate plausible baseline scenario.

To ensure transparency regarding the condition of degraded lands, all information used in the analysis and demonstration shall be archived and verifiable.

³ This section interprets the term "degradation" only in the context of non-forest land, subject of this methodology. Degradation of existing forests is not covered. Therefore the definition of degradation is more constrained than in the IPCC report on "Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types, see http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/degradation.htm.

⁴ This is to comply with a ruling of the Executive Board of the CDM, see annex 3 of the sixteenth meeting of the Board at http://cdm.unfccc.int/EB/Meetings>.

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

5. Estimation of baseline net GHG removals by sinks

To determine the baseline net GHG removals by sinks, the following steps are necessary:

- a) Determination of the sum of carbon stock changes for each stratum:
 - For those strata without growing trees, the sum of carbon stock changes in above-ground and below-ground biomass is set as zero;
 - For those strata with growing trees, the sum of carbon stock changes in above-ground and below-ground biomass is determined based on the projection of their number and growth, based on growth models (yield tables), allometric equations, and local or national or IPCC default parameters (detail below in this section).
- b) Sum the baseline net GHG removals by sinks across all strata.

The baseline is determined ex-ante and remains fixed during the subsequent crediting period. Thus the baseline is not monitored.

The baseline net greenhouse gas removals by sinks can be calculated by:

$$\Delta C_{BSL,t} = \sum_{i} \sum_{j} \Delta C_{ij,t} \tag{1}$$

where:

 $\Delta C_{BSL,t}$ the sum of the changes in carbon stocks in the living biomass of trees for year t,

tonnes CO_2 yr⁻¹ for year t

 ΔCij , t average annual carbon stock change in living biomass of trees for

stratum i species j, tonnes CO_2 yr-1 for year t

 $\Delta C_{ij,baseline,t}$ average annual carbon stock change in living biomass of trees for stratum i species

j in the absence of the project activity, tonnes CO_2 yr⁻¹ for year t

i strata
i tree species

t 1 to length of crediting period

For those strata without growing trees, $\Delta C_{ij,\ baseline,t} = 0$. For those strata with a few growing trees, $\Delta C_{ij,\ baseline,t}$ is estimated using one of following two methods that can be chosen based on the availability of data.

(a) Method 1 (Carbon gain-loss method)⁵

$$\Delta C_{ij,t} = (\Delta C_{G,ij,t} - \Delta C_{L,ij,t}) \tag{2}$$

where:

 ΔCij , t average annual carbon stock change in living biomass of trees for stratum i

species j, tonnes CO_2 yr-1 for year t

 $\Delta C_{G,ij,t}$ average annual increase in carbon due to biomass growth of living trees for

stratum i species j, tonnes CO_2 yr⁻¹ for year t

6

⁵ GPG-LULUCF Equation 3.2.2, Equation 3.2.4 and Equation 3.2.5

- Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

average annual decrease in carbon due to biomass loss of living trees for $\Delta C_{L.ii.t}$

stratum i species j, tonnes CO_2 yr⁻¹ for year t. To be conservative for the

baseline scenario, $\Delta C_{L,ii} = 0$ in this methodology.

$$\Delta C_{G,ij,t} = A_{ij} \cdot G_{TOTAL,ij,t} \cdot CF_i \cdot 44/12 \tag{3}$$

where:

 ΔCG ,ij,taverage annual increase in carbon due to biomass growth of living trees for

stratum i species j, tonnes CO_2 yr-1 for year t

area of stratum i species j, hectare (ha) A_{ii}

 $G_{TOTAL,ij,t}$ average annual increment of total dry biomass of living trees for stratum i species j,

tonnes of dry matter, ha⁻¹ yr⁻¹ for year t

 CF_i the carbon fraction for species j, tonnes C (tonne d.m.)⁻¹ 44/12 ration of molecular weights of CO₂ and carbon, dimensionless

$$G_{TOTAL,ii,t} = G_{w,ii,t} \cdot (1 + R_i)$$

$$G_{w,ij,t} = I_{v,ij,t} \cdot D_i \cdot BEF_{1,i}$$
(5)

where:

average annual increment of total dry biomass of living trees for stratum i species j, $G_{TOTAL,ij,t}$

tonnes of dry matter, ha⁻¹ yr⁻¹ for year t

average annual aboveground dry biomass increment of living trees for stratum i $G_{w,ij,t}$

species j, tonnes d.m. ha^{-1} yr⁻¹ for year t

Root-shoot ratio appropriate to increments for species *j*, dimensionless R_i

average annual increment in merchantable volume for stratum i species j, m³ ha⁻¹ yr⁻¹ $I_{v,ij,t}$

for year t

basic wood density for species j, tonnes d.m. m⁻³ D_i

 $BEF_{I,i}$ biomass expansion factor for conversion of annual net increment (including bark) in

merchantable volume to total aboveground biomass increment for species j, dimen-

sionless

(b) Method 2 (stock change method) ⁶

$$\Delta C_{ij,t} = (C_{2,ij} - C_{1,ij}) / T \cdot 44/12 \tag{6}$$

$$C_{ij} = C_{AB,ij} + C_{BB,ij} \tag{7}$$

$$C_{AB,ij} = A_{ij} \cdot V_{ij} \cdot D_j \cdot BEF_{2,j} \cdot CF_j$$
(8)

$$C_{BB,ij} = C_{AB,ij} \cdot R_i \tag{9}$$

where:

 $\Delta Cij,t$ average annual carbon stock change in living biomass of trees for stratum i species j, tonnes CO_2 yr⁻¹ for year t

⁶ GPG-LULUCF Equation 3.2.3

7

UNFCCC/CCNUCC

CDM - Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$C_{2,ij}$	total carbon stock in living biomass of trees for stratum i species j, calculated at time
------------	---

2, tonnes C

 $C_{l,ii}$ total carbon stock in living biomass of trees for stratum i species j, calculated at time

1, tonnes C

T number of years between times 2 and 1

 $C_{AB,ij}$ carbon stock in aboveground biomass for stratum i species j, tonnes C carbon stock in belowground biomass for stratum i species j, tonnes C

 A_{ij} area of stratum *i* species *j*, hectare (ha)

 V_{ij} merchantable volume of stratum *i* species *j*, m³ ha⁻¹

 D_i basic wood density for species j, tonnes d.m. m⁻³ merchantable volume

 $BEF_{2,j}$ biomass expansion factor for conversion of merchantable volume to above ground tree

biomass for species *j*, dimensionless

 CF_i the carbon fraction for species j, tonnes C (tonne d.m.)⁻¹

 R_i Root-shoot ratio species j, dimensionless

The time points 1 and 2, for which the stock are estimated taken to determine the ΔC_{ij} must be broadly representative of the typical age of the trees under the baseline scenario during the crediting period. For example, if the trees are already mature at the start of the project, it is not appropriate to select time point 1 and 2 that corresponds to the juvenile fast growth stage.

C_{AB,ii} can be estimated through the use of an allometric equations and a growth model or yield table.

$$C_{AB,ii} = A_{ii} \cdot CF_i \cdot f_i(DBH, H)$$
 (10)

where:

CAB,ij carbon stock in aboveground biomass for stratum *i* species *j*, tonnes C

 $f_i(DBH,H)$ an allometric equation linking above ground biomass of living trees (d.m. ha⁻¹) to mean

diameter at breast height (DBH) and possibly tree height (H).

DBH(t), H(t) a growth model or yield table that gives the expected tree dimensions as a function of

tree age

 A_{ij} area of stratum *i* species *j*, hectare (ha)

 CF_i the carbon fraction for species j, tonnes C (tonne d.m.)⁻¹

For the choice of methods 1 or 2 above, there is no priority in terms of transparency and conservativeness. The choice should mainly depend on the kind of parameters available. V_{ij} and $I_{v,ij}$ shall be estimated based on number of trees and national/local growth curve/table that usually can be obtained from national/local forestry inventory. D_j , $BEF_{1,j}$, $BEF_{2,j}$, CF_j and R_j are regional and species specific and shall be chosen with the following priority:

- a) existing local and species specific;
- b) national and species specific (e.g. from national GHG inventory);
- c) species specific from neighbouring countries with similar conditions. In the case of a large country that encompasses very different biome types, c might be preferable to b;
- d) globally species specific (e.g. GPG-LULUCF).

If species specific information is not available information for similar species. (e.g., shape of trees, broadleaved vs deciduous etc) can be used, with data source priority as listed for species specific information.

When choosing from global or national databases because local data are limited, it shall be confirmed

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

with any available local data that this choice of values does not lead to underestimating the baseline net GHG removals by sinks, as far as can be judged. Local data used for confirmation may be drawn from the literatures and local forestry inventory or measured directly by project participants especially for BEF and root-shoot ratios that are age- and species- dependent.

Attention should be given to the fact that trees under the baseline scenario are trees outside forest and the biomass expansion factors for trees outside forest is generally higher than for forest trees.

6. Additionality

This methodology uses the latest version of the "Tool for the demonstration and assessment of additionality for afforestation and reforestation CDM project activities" approved by the CDM Executive Board.

7. Ex ante actual net GHG removal by sinks

In choosing parameters and making assumptions project participants should retain a conservative approach, i.e. if different values for a parameter are plausible, a value that does not lead to an overestimation of the actual net GHG removals by sinks or underestimation of the baseline bet GHG removals by sinks should be applied.

(a) Verifiable changes in carbon stocks in the carbon pools

The average annual carbon stock change in aboveground biomass and belowground biomass in living trees between two monitoring events for stratum i species j ($\Delta C_{ij,project}$) shall be estimated using one of two methods described in section II.5, i.e., equation (2) to (10).

However, when method 1 (Carbon gain-loss method) is used, the following equations shall be used to calculate the average annual decrease in carbon due to biomass loss in living trees for stratum i -species j ($\Delta C_{L,ij}$)⁸

$$\Delta C_{L,ij} = L_{fellings,ij} + L_{fuelwood,ij} + L_{otherloss,ij}$$
(12)

$$L_{fellings,ij} = H_{ij} \cdot D_j \cdot BEF_{2,j} \cdot CF_j \tag{13}$$

$$L_{fuelwood,ij} = FG_{ij} \cdot D_j \cdot BEF_{2,j} \cdot CF_j$$
(14)

$$L_{otherloss.ii} = A_{disturbance.ii} \cdot F_{disturbance.ii} \cdot B_{w.ii} \cdot CF_{i}$$
(15)

where:

 $\Delta C_{L,ij}$

average annual decrease in carbon due to biomass loss in living trees for stratum *i* species *j*, tonnes C yr⁻¹

L_{fellings,ij} L_{fuelwood.ii} Annual carbon loss due to commercial fellings for stratum i species j, tonnes C yr⁻¹ annual carbon loss due to fuelwood harvesting of trees for stratum i species j, tonnes C yr⁻¹

Note: double counting between $L_{fellings,ij}$ and $L_{fuelwood,ij}$ must be avoided. Collection of fuelwood from the ground (from dead wood and litter pools) is not relevant, because

⁷ Hereinafter referred as "A/R additionality tool". Please refer to

http://cdm.unfccc.int/methodologies/ARmethodologies/approved_ar.html

⁸ Refers to GPG-LULUCF Equation 3.2.6, Equation 3.2.7, Equation 3.2.8 and Equation 3.2.9

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

these pools are omitted from the accounting.

 $L_{other \ losses,ij}$ annual natural losses of carbon in living trees for stratum i species j, tonnes C yr⁻¹

 H_{ij} annually extracted merchantable volume for stratum *i* species *j*, m³ yr⁻¹ basic wood density for species *j*, tonnes d.m. m⁻³ merchantable volume

 $BEF_{2,j}$ biomass expansion factor for converting merchantable volumes of extracted

roundwood to total aboveground biomass (including bark) for stratum i species j,

dimensionless

 CF_i Carbon fraction of dry matter for species i, tonnes C (tonne d.m.)⁻¹

 FG_{ii} Annual volume of fuel wood harvesting of living trees for stratum i species j, m³ yr⁻¹

A disturbances in stratum i species j, ha yr⁻¹

 $F_{disturbance,ij}$ the fraction of the biomass in living trees for stratum i species j affected by

disturbance, dimensionless

 $B_{W,ii}$ average biomass stock of living trees for stratum i species j, tonnes d.m. ha⁻¹

The choices of methods and parameters shall be made in the same ways as described in section II.5.

(b) GHG emissions by sources

The A/R CDM project activity may cause GHG emissions within the project boundary, in particular . The emission of CO_2 , CH_4 and N_2O from following sources, also contained in Table 1 above, may occur as a result of the proposed A/R CDM project activity⁹:

- Emissions of greenhouse gases from combustion of fossil fuels for site preparation, thinning and logging;
- Decrease in carbon stock in living biomass of existing non-tree vegetation, caused either by competition of planted trees or site preparation including slash and burn;
- Emissions of non-CO₂ greenhouse gases from biomass burning for site preparation (slash and burn activity);
- N₂O emissions caused by nitrogen fertilization application.

The GHG emission as a result of the implementation of the proposed A/R CDM project activity within the project boundary are estimated as follows:

$$GHG_E = E_{FuelBurn} + E_{biomassloss} + E_{Non-CO_2, BiomassBurn} + N_2 O_{direct-N_{fertilizer}}$$
(16)

where:

 GHG_E the GHG emissions as a result of the implementation of the A/R CDM project

activity within the project boundary, tonnes CO₂-e yr⁻¹

 $E_{FuelBurn}$ the CO₂ emissions from combustion of fossil fuels within the project boundary,

tonnes CO₂-e yr⁻¹

 $E_{biomassloss}$ the CO₂ emissions as a result of a decrease in carbon stock in living biomass of

existing non-tree vegetation, tonnes CO₂-e yr⁻¹. This is an initial loss, and therefore accounted once upfront as part of the first monitoring interval.

 $E_{Non-CO2, BiomassBurn}$ Non-CO₂ emission as a result of biomass burning within the project boundary,

tonnes CO₂-e vr⁻¹

 $N_2O_{direct-N_{control}}$ N₂O emission as a result of direct nitrogen application within the project

9 Refer to Box 4.3.1 and Box 4.3.4 in GPG-LULUCF

_

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

boundary, tonnes CO₂-e yr⁻¹

(i) Calculation of GHG emissions from burning fossil fuels

This most likely results from machinery use during site preparation and logging. The IPCC 1996 Guidelines could be used to estimate CO₂ emissions from combustion of fossil fuels:

$$E_{FuelBurn} = (CSP_{diesel} \cdot EF_{diesel} + CSP_{gasoline} \cdot EF_{gasoline}) \cdot 0.001$$
(17)

where:

 $E_{FuelBurn}$ CO₂ emissions from combustion of fossil fuels within the project boundary,

tonnes CO₂-e yr⁻¹

 CSP_{diesel} volume of diesel consumption, litre (l) yr⁻¹ $CSP_{gasoline}$ volume of gasoline consumption, litre (l) yr⁻¹

 EF_{diesel} emission factor for diesel, kg CO₂ Γ^1 emission factor for gasoline, kg CO₂ Γ^1 0.001 conversion from kg to tonnes of CO₂

Project participants should use national CO₂ emission factors. If these are not available they may use default emission factors as provided in the 1996 Revised IPCC Guidelines.

(ii) Calculation of the decrease in carbon stock in living biomass of existing non-tree vegetation

It is assumed that all existing non-tree vegetation will disappear due to site preparation including slash and burn, or competition from planted trees. This is a conservative assumption because there will be some non-tree vegetation in the project scenario. Some vegetation may re-grow even if all non-tree vegetation is removed during the site preparation (overall plough or site burning). The non-tree vegetation carbon loss will be accounted once during the crediting period, as part of the first monitoring interval.

$$E_{biomassloss} = \sum_{i} A_{i} \cdot B_{non-tree,i} \cdot CF_{non-tree} \cdot 44/12$$
 (18)

where:

 $E_{biomassloss}$ CO₂ emissions as a result of a decrease in carbon stock in living biomass of

existing non-tree vegetation, tonnes CO₂-e yr⁻¹. This is an initial loss, and there-

fore accounted once upfront as part of the first monitoring interval

 A_i area of stratum i, ha yr⁻¹

 $B_{non-tree,i}$ average non-tree biomass stock on land to be planted before the start of a pro-

posed A/R CDM project activity for stratum i, tonnes d.m. ha⁻¹

 $CF_{non-tree}$ the carbon fraction of dry biomass in non-tree vegetation, tonnes C (tonne d.m.)⁻¹

ration of molecular weights of CO₂ and carbon, dimensionless

(iii) Calculation of emissions from biomass burning

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

If slash and burn occurs during site preparation before planting and/or replanting, this results in non-CO₂ emissions (CO₂ emission has been covered in B) above). Based on GPG for LULUCF¹⁰, this type of emission can be estimated as follows:

$$E_{Non-CO_2,BiomassBurn} = E_{BiomassBurn,N_2O} + E_{BiomassBurn,CH_A}$$
 (19)

where:

 $E_{Non-CO2, BiomassBurn}$ the increase in Non-CO₂ emission as a result of biomass burning in slash and

burn, tonnes CO₂-e yr⁻¹

 $E_{BiomassBurn, N2O}$ N₂O emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹ CH₄ emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹

$$E_{BiomassBurn, N_2O} = E_{BiomassBurn, C} \cdot (N/C \, ratio) \cdot ER_{N2O} \cdot \frac{44}{28} \cdot GWP_{N2O}$$
 (20)

$$E_{BiomassBurn,CH_4} = E_{BiomassBurn,C} \cdot ER_{CH_4} \cdot 16/12 \cdot GWP_{CH_4}$$
 (21)

where 11:

 $E_{BiomassBurn,C}$ loss of carbon stock in aboveground biomass due to slash and burn, t C yr⁻¹

N/C ratio Nitrogen-Carbon ratio, dimensionless

ration of molecular weights of N₂O and nitrogen, dimensionless ration of molecular weights of CH₄ and carbon, dimensionless

 ER_{N2O} IPCC default emission ratio for N₂O = 0.007 ER_{CH4} IPCC default emission ratio for CH₄ = 0.012

Global Warming Potential for N_2O_2 , kg CO_2e (kg N_2O_2)⁻¹ (IPCC default = 310,

valid for the first commitment period)

Global Warming Potential for CH₄, kg CO₂e (kg CH₄)⁻¹ (valid for the first com-

mitment period)

$$E_{BiomassBurn,C} = \sum_{i} A_{burn,i} \cdot B_{i} \cdot CE \cdot CF$$
 (22)

where:

 $E_{BiomassBurn,C}$ loss of carbon stock in aboveground biomass due to slash and burn, t C yr⁻¹

 $A_{burn,i}$ area of slash and burn for stratum i, ha yr⁻¹

 B_i average stock in above ground living biomass before burning for stratum i, tonnes

d.m. ha⁻¹

CE combustion efficiency, dimensionless, IPCC default = 0.5 CF carbon fraction of dry biomass, tonnes C (tonne d.m.)⁻¹

The combustion efficiencies may be chosen from Table 3.A.14 of GPG-LULUCF. If no appropriate combustion efficiency can be used, the IPCC default of 0.5 should be used, see section 3.2.1.4.2.2 in

¹⁰ Refers to equation 3.2.20 in GPG for LULUCF

¹¹ Refers to Table 5.7 in 1996 Revised IPCC Guideline for LULUCF and Equation 3.2.19 in GPG LULUCF

12

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

GPG LULUCF. The nitrogen-carbon ratio (N/C ratio) is approximated to be about 0.01. This is a general default value that applies to leaf litter, but lower values would be appropriate for fuels with greater woody content, if data are available.

(iv) Calculation of nitrous oxide emissions from nitrogen fertilization practices¹²

$$N_2 O_{\text{direct-N}_{\text{ferritiser}}} = \left[(F_{SN} + F_{ON}) \cdot EF_1 \right] \cdot 44/28 \cdot GWP_{N2O}$$
(23)

$$F_{SN} = N_{SN-Fert} \cdot (1 - Frac_{GASF})$$
(24)

$$F_{ON} = N_{ON-Fert} \cdot (1 - Frac_{GASM}) \tag{25}$$

where:

 $N_2O_{direct-N_{direct}}$ the direct N_2O emission as a result of nitrogen application within the project

boundary, tonnes CO₂-e yr⁻¹

 F_{SN} mass of synthetic fertilizer nitrogen applied adjusted for volatilization as NH₃

and NO_x, tonnes N yr⁻¹

 F_{ON} [Annual] mass of organic fertilizer nitrogen applied adjusted for volatilization

as NH₃ and NO_X, tonnes N yr⁻¹

 $N_{SN-Fert}$ mass of synthetic fertilizer nitrogen applied, tonnes N yr⁻¹ $N_{ON-Fert}$ mass of organic fertilizer nitrogen applied, tonnes N yr⁻¹

 EF_1 Emission Factor for emissions from N inputs, tonnes N_2O-N (tonnes N input)

1

Frac_{GASF} the fraction that volatilises as NH₃ and NO_X for synthetic fertilizers, dimen-

sionless

Frac_{GASM} the fraction that volatilises as NH₃ and NO_X for organic fertilizers, dimen-

sionless

ration of molecular weights of N₂O and nitrogen, dimensionless

Global Warming Potential for N_2O , kg CO_2e (kg N_2O)⁻¹ (IPCC default = 310,

valid for the first commitment period)

As noted in GPG 2000, the default emission factor (EF_1) is 1.25 % of applied N, and this value should be used when country-specific factors are unavailable. The default values for the fractions of synthetic and organic fertiliser nitrogen that are emitted as NO_X and NH_3 are 0.1 and 0.2 respectively in 1996 IPCC Guideline. Project participants may use scientifically-established specific emission factors that are more appropriate for their project. Specific good practice guidance on how to derive specific emission factors is given in Box 4.1 of GPG 2000.

(c) Actual net GHG removals by sinks

The actual net greenhouse gas removals are calculated as follows:

$$\Delta C_{ACTUAL} = \sum_{i} \sum_{j} \Delta C_{ij} - GHG_{E}$$
 (26)

where:

 ΔC_{ACTUAL} actual net greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹

 ΔC_{ij} average annual carbon stock change in living biomass of trees for stratum i species j,

tonnes CO₂ yr⁻¹.

¹² Refers to Equation 3.2.18 in IPCC GPG-LULUCF

13

Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

GHG emissions by sources within the project boundary as a result of the implementa- GHG_E tion of an A/R CDM project activity, tonnes CO₂-e yr⁻¹

8. Leakage

In choosing parameters and making assumptions project participants should retain conservative approach, i.e. if different values for a parameter are plausible, a value that does not lead to an underestimation of leakage emissions should be applied.

According to applicability conditions for this methodology, the land used for reforestation is abandoned and can under the proposed A/R CDM project activity continue to provide at least the same amount of goods and services. Consequently, as a result of the A/R CDM project activity, agricultural or pastoral activities will not be displaced from the project sites to other locations.

Similarly, the A/R CDM project activity will not result in any reduction of reforestation activities or increasing of deforestation activities outside of the project boundary. Under the baseline scenario, local farmers may collect a limited amount fuel (mainly shrub and grass) from the project sites. Dead wood and some living branch biomass from the A/R CDM project activity can continue to be collected by local farmers as fuelwood without compromising the growth of trees established under the project. Thus, as the result of the project activities, local farmers will not have to collect additional fuelwood on lands outside the project boundary.

The identified potential leakage of the proposed A/R CDM project activity may be GHG emissions caused by vehicle fossil fuel combustion due to transportation of seedling, labours, staff and harvest products to and/or from project sites (while avoiding double-counting with emission accounted for in E_{FuelBurn} above). The CO₂ emissions can be estimated using bottom-up approach described in GPG 2000^{1}

$$LK_{Vehicle,CO_2} = \sum_{i} \sum_{j} (EF_{ij} \cdot FuelConsumption_{ij}) / 1000$$
 (27)

$$FuelConsumption_{ij} = n_{ij} \cdot k_{ij} \cdot e_{ij}$$
 (28)

where:

LK_{Vehicle} CO2 total GHG emissions due to fossil fuel combustion from vehicles, tonnes CO₂-e yr

i vehicle type fuel type

 EF_{ii} emission factor for vehicle type i with fuel type j, kgCO₂/litre

FuelConsumption; consumption of fuel type *j* of vehicle type *i*, litres

number of vehicles n_{ii}

kilometres travelled by each of vehicle type i with fuel type j, km k_{ii} average fuel consumption of vehicle type i with fuel type i, litres/km e_{ii}

Country-specific emission factors shall be used if available. Default emission factors provided in the IPCC Guidelines and updated in the GPG 2000 may be used if there are no locally available data.

¹³ Refer to Equation 2.5 and Equation 2.6 in IPCC GPG 2000 for energy sector

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

9. Ex ante net anthropogenic GHG removal by sinks

The net anthropogenic GHG removals by sinks is the actual net GHG removals by sinks minus the baseline net GHG removals by sinks minus leakage, therefore, the following general formula can be used to calculate the net anthropogenic GHG removals by sinks of an A/R CDM project activity (C_{AR-CDM}), in tonnes CO₂-e yr⁻¹:

$$C_{AR-CDM} = C_{ACTUAL} - C_{BSL} - LK_{Vehicle,CO2}$$
(29)

where:

 C_{AR-CDM} C_{ACTUAL} C_{BSL}

net anthropogenic greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹ actual net greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹

baseline net greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹

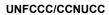
 $LK_{Vehicle,CO2}$ total GHG emissions as leakage due to fossil fuel combustion from vehicles,

tonnes CO₂-e yr⁻¹

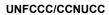
10. Uncertainties

The approach provided in section III.11 below should be applied.

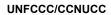
11. Data needed for ex ante estimations


Data/Parameters	Descriptions	Vintage	Resolution	Sources
Historical land	Determining baseline	Earliest	Local	Publications, national
use/cover data	approach	possible up to		or regional forestry
	Demonstrating eligibility	now		inventory, local
	of land			government, interview
Land use/cover	Demonstrating eligibility	Around 1990	Regional	Forestry inventory
map	of land, stratifying land	and most	local	
	area	recent date		
Satellite image	Demonstrating eligibility	1989/1990 and	Local	e.g. Landsat
	of land, stratifying land	most recent		
	area	date		
Landform map	Stratifying land area	most recent	1:10000	Local government
		date		
Soil map	Stratifying land area	most recent		Local government and
		date		institutional agencies
		Before 1998	National	
sectoral policies	consideration		and	
			sectoral	
UNFCCC decisions		1997 up to	Internation	UNFCCC website
		now	al	
IRR, NPV cost	Indicators of investment	Most recent	Local	Calculation
benefit ratio, or unit	analysis	date		
cost of service				
National and sectoral policies UNFCCC decisions IRR, NPV cost benefit ratio, or unit	Stratifying land area Additionality consideration Indicators of investment	date most recent date Before 1998 1997 up to now Most recent	highest available scale National and sectoral Internation al	Local government ar institutional agencies UNFCCC website

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006


Investment costs	Including land purchase or rental, machinery, equipments, buildings, fences, site and soil preparation, seedling, planting, weeding, pesticides, fertilization, supervision, training, technical consultation, etc. that occur in the establishment period	Most recent date, taking into account market risk	Local	Local statistics, published data and/or survey
Operations and maintenance costs	Including costs of thinning, pruning, harvesting, replanting, fuel, transportation, repairs, fire and disease control, patrolling, administration, etc.	Most recent date, taking into account market risk	Local	Local statistics, published data and/or survey
Transaction costs	Including costs of project preparation, validation, registration, monitoring, etc.	Most recent date	National and inter- national	
Revenues	Those from timber, fuelwood, non-wood products, with and with- out CER revenues, etc.	Most recent date, taking into account market risk	National and local	Local statistics, published data and/or survey
ΔC_{BSL}	Baseline net GHG removals by sinks			
ΔC_{ij}	average annual carbon stock change in living biomass of trees		Stratum, species	estimated
$\Delta C_{G,ij}$	average annual increase in carbon due to biomass growth	Most recent	Global default to local	GPG-LULUCF, national and local forestry inventory
$C_{L,ij}$	average annual decrease in carbon due to biomass loss	Most recent	Global default to local	GPG-LULUCF, national and local forestry inventory
A_{ij}	Area of stratum and species		Stratum and species	
$G_{TOTAL,ij}$	annual average increment rate in total biomass per hectare for stratum	Most recent	Global default to local	GPG-LULUCF, national and local forestry inventory
CF	Carbon fraction		Global default to local	GPG-LULUCF, national GHG inventory
44/12	ration of molecular weights of CO ₂ and carbon		Global default	IPCC

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006


			13 May 2000
$G_{w,ij}$	average annual	Global	GPG-LULUCF,
-	aboveground biomass	default to	national GHG
	increment	local	inventory
R_j	Root-shoot ratio for tree	Global	GPG-LULUCF, na-
	species	default to	tional GHG inventory,
		local	local survey
$L_{v,ij}$	average annual net	Global	GPG-LULUCF,
	increment in volume	default to	national GHG
	suitable for industrial	local	inventory, local
	processing		survey
D_j	Species specific basic	Global	GPG-LULUCF, na-
	wood density	default to	tional GHG inventory,
		local	local survey
$BEF_{I,j}$	Species specific biomass	Global	GPG-LULUCF,
	expansion factor for	default to	national GHG
	conversion of annual net	local	inventory, local
	increment (including		survey
	bark) to aboveground		
DEE	biomass increment	01.1.1	CDC LILLION
$BEF_{2,j}$	Species specific biomass	Global	GPG-LULUCF,
	expansion factor for	default to	national GHG
	conversion of merchant-	local	inventory, local
	able volume to above-		survey
C	ground tree biomass	C1-1-1	CDC LULUCE
$C_{2,ij}$	Total carbon stock in	Global	GPG-LULUCF, na-
	living biomass of trees,	default to	tional GHG inventory,
C	calculated at time 2	local Global	local survey
$C_{I,ij}$	Total carbon stock in	default to	GPG-LULUCF, national GHG
	living biomass of trees, calculated at time 1	local and	inventory, local
	calculated at time 1	species	=
		specific	survey
V_{ij}	Merchantable volume	Local and	Forestry inventory,
r ij	wicienamable volume	species	yield table, local
		specific	survey
ΔC_{ACTUAL}	Actual net greenhouse	Project	Calculated
△CACTUAL	gas removals by sinks	specific	Carcurated
$C_{AB,ij}$	Carbon stock in	Local and	Calculated
$\sim_{AB,ij}$	aboveground biomass	species	Carculated
	acorograma diomass	specific	
$C_{BB,ij}$	Carbon stock in	Local and	Calculated
$\smile_{\mathcal{BB},\mathcal{U}}$	belowground biomass	species	Caroaratoa
	ocion ground ofornidos	specific	
GHG_E	Increase in GHG	Project	Calculated
SII O E	emissions by the sources	specific	Caroaratoa
	within the project	Specific	
	boundary as a result of		
	the implementation of an		
	A/R CDM project		

CDM – Executive Board AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

			10 May 2000
f _j (DBH,H)	Allometric equation	National, local, species specific	Forestry inventory, published data, local survey
$L_{fellings,ij}$	Annual carbon loss due to commercial fellings	•	Calculated
$L_{\mathit{fuelwood,ij}}$	Annual carbon loss due to fuelwood gathering of trees		Calculated
L _{other losses,ij}	Annual natural losses of carbon in living trees		Calculated.
H_{ij}	Annually extracted volume	Stratum	Monitoring
FG_{ij}	Annual volume of harvested fuel wood	Stratum	Monitoring
A disturbance,ij	Areas affected by disturbances	Stratum	Monitoring
$F_{\it disturbance,ij}$	The fraction of the biomass in living trees for stratum <i>i</i> species <i>j</i> affected by disturbance	Stratum	Monitoring
$B_{W,j}$	Average biomass stock of living trees	Stratum	Local survey
$E_{FuelBurn}$	Emissions from burning of fossil fuels		Estimated
$E_{biomassloss}$	Decrease in carbon stock in living biomass of existing non-tree vegetation		Estimated
E _{Non-CO2,BiomassBurn}	The increase in non-CO ₂ emission as a result of biomass burning within the project boundary		Estimated
$N_2 O_{\it direct-N_{\it fertilizer}}$	The increase in N ₂ O emission as a result of direct nitrogen application within the project boundary		Estimated
CSP_{diesel}	Amount of diesel consumption	Project	Monitored
$CSP_{gasoline}$	Amount of gasoline consumption	Project	Monitored
EF _{diesel}	Emission factor for diesel	Global to national	IPCC Guideline, GPC 2000, national inventory
$EF_{gasoline}$	Emission factor for gasoline	Global to national	IPCC Guideline, GPC 2000, national inventory

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

$B_{non-tree,i}$	Average biomass stock on land to be planted, before the start of a		Stratum	Local survey
	proposed A/R CDM			
	project activity			
$CF_{non-tree}$	The carbon fraction of		Global	GPG-LULUCF, na-
	dry biomass in non-tree		default to	tional GHG inventory.
	vegetation		local	local survey
$E_{BiomassBurn,C}$	Loss of carbon due to		Stratum	Estimated
	slash and burn			
$E_{BiomassBurn, N2O}$	N ₂ O emission from			
	biomass burning in slash			
	and burn			
$E_{BiomassBurn, CH4}$	CH ₄ emission from			
	biomass burning in slash			
	and burn			
B_i	Average stock in living	Most updated	Site	Survey
	biomass before burning		specific	
$A_{burn,i}$	Area of slash and burn		Site	Survey
			specific	
CE	Average biomass com-		Global and	IPCC GPG-2000,
	bustion efficiency		national	national GHG
			default	inventory
N/C ratio			Global	IPCC
N ₂ O _{direct-Nfertilizer}	Emission of N ₂ O caused			Estimated
v	by nitrogen fertilization			
$\overline{F_{SN}}$	Annual amount of syn-			Estimated
	thetic fertilizer nitrogen			
	adjusted for volatiliza-			
	tion as NH ₃ and NO _X			
$\overline{F_{ON}}$	Annual amount of or-			Estimated
	ganic fertilizer nitrogen			
	adjusted for volatiliza-			
	tion as NH ₃ and NO _X			
EF_{I}	Emission factor for		Global	GPG 2000
	emissions from N inputs		default	
$Frac_{GASF}$	The fraction that vola-		Global	IPCC Guideline
	tilises as NH ₃ and NO _X		default	
	for synthetic fertilizers			
$Frac_{GASM}$	The fraction that vola-		Global	IPCC Guideline
	tilises as NH ₃ and NO _X		default	
	for organic fertilizers			
N _{SN-Fert}	Amount of synthetic		Project	Monitored
· · ·	fertilizer nitrogen		3	
	applied			
N _{SN-Fert}	Amount of organic fer-		Project	Monitored
5.1 1 611	tilizer nitrogen applied		.,	•
LK	Total GHG emissions			

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$LK_{Vehicle,CO2}$	CO ₂ emissions caused by		
	transportation		
$LK_{Vehicle,N2O}$	N ₂ O emissions caused		
	by transportation		
LK _{Vehicle,CH4}	CH ₄ emissions caused by		
	transportation		
EF_{ij}	Emission factor for	Global,	GPG-2000, IPCC
-	vehicle type <i>i</i> with fuel	national	1996 Guideline, na-
	type j		tional GHG inventory
$FuelConsumption_{ij}$	Consumption of fuel	Project	Estimated
	type <i>j</i> of vehicle type <i>i</i>		
e_{ij}	Average liters consumed	Global to	GPG-2000, IPCC
	per kilometer travelled	national	1996 Guideline, na-
	for vehicle type <i>i</i> with		tional GHG inventory
	fuel type <i>j</i>		
k_{ij}	Kilometers traveled by	Project	Monitored
	each of vehicle type i		
	with fuel type <i>j</i>		
n_{ij}	Number of vehicles	Project	Monitored

12. Other information

The baseline net GHG removal by sinks, actual net GHG removal by sinks and net anthropogenic GHG removal by sinks are expressed annually since not all emission/removals occur every year. Some sources such as fertilizer application, machinery usage and slash and burn occur only in selected years. The annual carbon stock change is calculated in the timeframe of a monitoring interval followed by dividing by the year of the interval. Hence at the end, all source/sinks are expressed in annual numbers. Since CERs will not be issued annually, the issued tCERs or ICERs will be calculated according to equations made available in the chapter: Ways of calculating tCERs and ICERs...

Sectoral Scope: 14 19 May 2006

Section III: Monitoring methodology description

1. Monitoring project boundary and project implementation

(a) Monitoring the boundary of the proposed A/R CDM project activity

This is meant to demonstrate that the actual planting area conforms with the planting area outlined in the project plan. The following activities are foreseen:

- Field survey concerning the actual boundary within which reforestation activity has occurred, site by site;
- Measuring geographical positions (latitude and longitude of each corner of polygon sites) using GPS:
- Checking whether the actual boundary is consistent with the description in the CDM-AR-PDD;
- If the actual boundary falls outside of the designed boundary in CDM-AR-PDD, additional information for lands beyond the designed boundary in CDM-AR-PDD shall be provided; the eligibility of these lands as a part of the A/R CDM project activity shall be justified; and the projected baseline scenario shall be demonstrated to be applicable to these lands. Otherwise, these lands shall not be accounted as a part of the A/R CDM project activity. Such changes in boundary shall be communicated to the DOE and subject to validation during the project, e.g. during the first verification event;
- Input the measured geographical positions into GIS system and calculate the eligible area of each stratum and sub-stratum:
- The project boundary shall be monitored periodically all through the crediting period, including through remote sensing as applicable. If the forest area changes during the crediting period, for instance, because deforestation occurs on the project area, the specific location and area of the deforested land shall be identified. Similarly, if the planting on certain lands within the project boundary fails these lands shall be documented.

(b) Monitoring of forest establishment

To ensure that the planting quality confirm to the practice described in CDM-AR-PDD and is well-implemented, the following monitoring activities shall be conducted in the first three years after planting:

- Confirm that site and soil preparations are implemented based on practice documented in CDM-AR-PDD. If pre-vegetation is removed, e.g., slash and burn of pre-existing vegetation, emissions associated shall be accounted (described in section below);
- Confirm that site preparation does not cause significant longer term net emissions from soil carbon;
- Survival checking:
 - The initial survival rate of planted trees shall be counted three months after the planting, and re-planting shall be conducted if the survival rate is lower than 90 percent;
 - Final checking three years after the planting;
 - The checking of the survival rate may be conducted using permanent sample plots;
- Weeding checking: check and confirm that the weeding practice is implemented as described in the CDM-AR-PDD;
- Survey and check that species and planting for each stratum and sub-stratum are in line with the CDM-AR-PDD.

UNFCCC/CCNUCC

CDM - Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14

19 May 2006

(c) Monitoring of forest management

Forest management practices are important drivers of the GHG balance of the project, and thus must be monitored. Practices to be monitored include:

- Thinning: specific location, area, tree species, thinning intensity, biomass removed;
- Harvesting: harvested location, area, tree species, biomass removed;
- Fertilization: tree species, location, amount and type of fertilizer applied, etc.;
- Checking and confirming that harvested lands are re-planted or re-sowed immediately after harvesting if direct planting or seeding is used;
- Checking and ensuring that good conditions exist for natural regeneration if harvested lands are allowed to regenerate naturally.

2. Stratification and sampling for ex-post calculations

(a) Stratification

Project areas are usually heterogeneous in terms of micro-climate, soil condition and vegetation cover in addition to different trees species and forest establishment year. Therefore it is necessary to stratify the project area. This can increase the accuracy of the measuring and monitoring in a cost-effective manner. Stratification of the project area into relatively homogeneous units can either increase the measuring precision without increasing the cost unduly, or reduce the cost without reducing measuring precision because of the lower variance within each homogeneous unit. The prestratification can be implemented using steps as follows:

Step 1: Assessing the key factors influencing carbon stocks in the above- and below-biomass pools. These factors may include soil features, micro-climate, landform (e.g., elevation, slope gradient), tree species to be planted, year to be planted, human management, etc.

Step 2: Collecting local information of key factors identified in step 1, e.g.:

- local site classification maps and/or tables;
- the most updated land use/cover maps and/or satellite images / aerial photography;
- Soil types, parent rocks and preferably soil maps;
- landform information and/or maps;
- soil erosions intensity;
- other information relevant to key factors identified above.

Data sources may include archives, records, statistics, study reports and publications of national, regional or local governments, institutes and/or agencies, and literature.

Step 3: Preliminary stratification: The stratification shall be conducted in a hierarchical order that depends on the significance of key factors on carbon stock changes or the extent of difference of the key factors across the project area. Only once higher level stratification is complete shall stratification at the next level down commence. At each level in the hierarchy, stratification shall be conducted within the strata determined at the upper level. For example, if there is a significant climatic difference within the project boundary, the stratification process may begin with stratification according to difference of the climate. If the key factor in the second level is soil type, then strata determined in the first level may be further stratified based on difference of soil type. Preferably, the stratification can be carried out on GIS platform by overlaying information/maps collected, and in this case the hierarchical order may not necessary.

UNFCCC/CCNUCC

CDM - Executive Board

Sectoral Scope: 14 19 May 2006

Step 4: Carrying out a supplementary sampling survey on site specifications for each preliminary stratum, e.g.:

- Existing trees if any: species, age class, number of trees, mean diameter at breast height (DBH) and/or height by measuring randomly selected plots with an area of 400 m² (at least three plots for each preliminary stratum);
- Non-tree vegetation: crown cover and mean height for herbaceous vegetation and shrubs by measuring randomly selected plots with an area of 4 m² (at least 10 plots for each preliminary stratum). For stratum with growing trees, the plots can be sub-plots of plots for measuring trees;
- Site and soil factors: soil type, soil depth, slope gradient, intensity of soil erosion, underground water level, etc. and sampling soils for soil organic matter determination;
- Human intervention: prescribed burning, logging, grazing, fuel collecting, medicine collection and others;
- Conducting variation analysis for key factors investigated above. If the variation is large within each preliminary stratum, more intense field investigation shall be conducted and/or further stratification shall be considered in step 5.

Step 5: Conducting a further stratification based on supplementary information collected from step 4 above, by checking whether or not each preliminary stratum is sufficiently homogenous or the difference among preliminary strata is significant. The degree of homogeneity may vary from project to project and may be assessed based on stratum size in the context of the project, the degree of natural variability and the significance of the variability to the project and baseline scenarios. A stratum within which there is a significant variation in any of vegetation type, soils and human intervention shall be divided into two or more strata. On the other hand, strata with similar features shall be merged into one stratum. Distinct strata should differ significantly from each other in terms of their baseline and/or project carbon calculation. For example, sites with different species and age classes of trees already growing shall form a separate stratum. Sites with a more intensive collection of fuelwood might also be a separate stratum. On the other hand, site and soil factors may not warrant a separate stratum as long as all lands have a baseline of continued degradation, with little to no vegetation growing, and with no human intervention, and as long as the carbon accumulation in above-ground and below-ground biomass is similar in the project scenario.

Step 6: Sub-stratification: Create sub-strata for each stratum based on tree species to be planted and/or on planting year described in CDM-AR-PDD.

Step 7: Create stratification map, preferably using a Geographical Information System (GIS). The GIS will be useful for integrating the data from different sources which can then be used to identify and stratify the project area. In addition, post stratification shall be considered after the first monitoring event, because there are possible changes of project boundaries, tree species arrangement and planting year in comparison to the CDM-AR-PDD. For example, it may be that within one stratum the estimated changes in carbon stocks point to the existence of two sub-populations. Also, two different strata may be similar enough to allow their merging into one stratum. The following factors shall be considered in the post-stratification:

- Data from monitoring of forest establishment and project boundary, e.g., actual project boundary, site and soil preparation, tree species and planting year;
- Data from monitoring of forest management, e.g., actual thinning and fertilization;

Variation in carbon stock changes for each stratum and substratum after the first monitoring event. Strata or substrata shall be grouped into one strata or substrata if they have similar carbon stock, carbon stock change and spatial variation.

Sectoral Scope: 14 19 May 2006

(b) Sampling

Permanent sampling plots will be used for sampling over time to measure and monitor changes in carbon stocks of above- and below ground biomass. Permanent sample plots are generally regarded as statistically efficient in estimating changes in forest carbon stocks because there is typically a high covariance between observations at successive sampling events. However, it should be ensured that the plots are treated in the same way as other lands within the project boundary, e.g., during site and soil preparation, weeding, fertilization, irrigation, thinning, etc., and should not be destroyed over the monitoring interval. Ideally, staff involved in management activities should not be aware of the location of monitoring plots. Where local markers are used, these should not be visible.

(i) Determining sample size

The number of plots depends on species variation, accuracy and monitoring interval. In this methodology the total sum of samples (n) is estimated as per a criterion of Neyman of fixed levels of accuracy and costs, according to Wenger (1984)¹⁴:

$$n = \left(\frac{t}{E}\right)^2 \left[\sum_{h=1}^L W_h \cdot s_h \cdot \sqrt{C_h}\right] \cdot \left[\sum_{h=1}^L W_h \cdot s_h / \sqrt{C_h}\right]$$
 (1)

$$n_h = n \cdot \frac{W_h \cdot s_h / \sqrt{C_h}}{\sum_{h=1}^{L} W_h \cdot s_h / \sqrt{C_h}}$$
 (2)

where:

L total number of strata

t t value for a confidence level (95%) E allowable error ($\pm 10\%$ of the mean) standard deviation of stratum h

 n_h . number of samples per stratum that is allocated proportional to $W_h \cdot s_h / \sqrt{C_h}$.

 W_h N_h/N

N number of total sample units (all stratum), $N = \sum N_h$

 N_h number of sample units for stratum h, calculated by dividing the area of stratum h by

area of each plot

 C_h cost to select a plot of the stratum h

The standard deviation of each stratum (s_h) can be determined through local forest inventory on similar site, either using growth volume or tree biomass data. Alternatively, if these data are unavailable, standard deviation of soil condition in each stratum can be used, as soil conditions that are surveyed in the stratification process are major determinants of tree growth within each stratum. The t value for 95% confidence is approximately equal to 2 when the number of sample plot is over 30. As the first step, use 2 as the t value and if the resulting n is less than 30, use the new n to get a new t value and conduct recalculation. This process can be repeated until the calculated n is stabilized. The allowable error is a value on a per-plot basis and can be estimated as $\pm 10\%$ of the expected mean

¹⁴ Wenger, K.F. (ed). 1984. Forestry handbook (2nd edition). New York: John Wiley and Sons.

24

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

biomass carbon stock per plot in living trees at the end of a rotation, which can be estimated as part of the ex-ante estimation of the actual net GHG removals by sinks described in the baseline methodology.

It is possible to reasonably modify the sample size after the first monitoring event based on the actual variation of the carbon stock changes determined from taking the n samples.

(ii) Randomly locating sampling plots

To avoid subjective choice of plot locations (plot centres, plot reference points, movement of plot centres to more "convenient" positions), the permanent sample plots shall be located systematically with a random start, which is considered good practice in GPG-LULUCF. This can be accomplished with the help of a GPS in the field. The geographical position (GPS coordinate), administrative location, stratum and sub-stratum series number of each plots shall be recorded and archived. The size of plots depends on the density of trees, in general between 100 m² for dense stands and 1000 m² for open stands.

Also, it is to be ensured that the sampling plots are distributed as evenly spread as possible. For example, if one stratum consists of three geographically separated sites, then it is proposed to

- divide the total stratum area by the number of plots, resulting in the average area per plot;
- divide the area of each site by this average area per plot, and assign the integer part of the result to this site. e.g., if the division results in 6.3 plots, then 6 plots are assigned to this site, and 0.3 plots are carried over to the next site, and so on.

3. Calculation of ex post baseline net GHG removals by sinks, if required

Under this methodology there is no need for monitoring the baseline.

4. Data to be collected and archived for of baseline net GHG removals by sinks

Under this methodology there is no need for monitoring the baseline.

5. Calculation of ex post actual net GHG removal by sinks

(Note: Calculation of increase in GHG emissions by the sources within the project boundary as a result of the implementation of an A/R CDM project activity)

In choosing parameters and making assumptions project participants should retain conservative approach, i.e. when different values of a parameter are plausible, a value that does not lead to overestimation of the net GHG removals by sinks should be applied.

The actual net greenhouse gas removals by sinks represent the sum of the verifiable changes in carbon stocks in the carbon pools within the project boundary, minus the increase in GHG emissions measured in CO_2 equivalents by the sources that are increased as a result of the implementation of an A/R CDM project activity, while avoiding double counting, within the project boundary, attributable to the A/R CDM project activity. Therefore,

$$\Delta C_{ACTUAL,t} = \sum_{i} \sum_{j} \sum_{k} \Delta C_{ijk,t} - GHG_{E,t}$$
(3)

where:

 $\Delta C_{ACTUAL,t}$ actual net greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹ for year t

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

 $\Delta C_{ijk,t}$ verifiable changes in carbon stock change in carbon pools for stratum *i* sub-stratum *j*

species k, tonnes CO₂ yr⁻¹ for year t

 $GHG_{E,t}$ increase in GHG emissions by the sources within the project boundary as a result of

the implementation of an A/R CDM project activity, tones CO₂-e yr⁻¹ in year t

t 1 to end of crediting period

(a) Verifiable changes in carbon stocks in the carbon pools

Since carbon stock changes in pools of soil organic matter, litter and dead wood are ignored in this methodology, the verifiable changes in carbon stock equal to the carbon stock changes in aboveground biomass and belowground biomass within the project boundary, estimated using equation ¹⁵

$$\Delta C_{ijk,t} = (\Delta C_{AB,ijk,t} + \Delta C_{BB,ijk,t}) \cdot 44/12 \tag{4}$$

$$\Delta C_{AB,ijk,t} = (C_{AB,m,ijk} - C_{AB,m,ijk})/T$$
(5)

$$\Delta C_{BB\ ijk\ t} = (C_{BB\ m_{\circ}\ ijk} - C_{BB\ m_{\circ}\ ijk})/T \tag{6}$$

where:

 $\Delta C_{ijk,t}$ verifiable changes in carbon stock in living biomass for stratum i sub-stratum j species k, tonnes CO_2 yr^{-1} in year t

 $\Delta C_{AB,ijk,t}$ changes in carbon stock in aboveground biomass for stratum *i* sub-stratum *j* species *k*,

tonnes C yr $^{-1}$ in year t

 $\Delta C_{BB,ijk,t}$ changes in carbon stock in belowground biomass for stratum i sub-stratum j species k,

tonnes C yr^{-1} in year t

 $C_{AB,m2,ijk}$ carbon stock in aboveground biomass for stratum i sub-stratum j species k, calculated at

monitoring point m₂, tonnes C

 $C_{AB, ml, ijk}$ carbon stock in aboveground biomass for stratum i sub-stratum j species k, calculated at

monitoring point m₁, tonnes C

 $C_{BB,m2,ijk}$ carbon stock in belowground biomass for stratum i sub-stratum j species k, calculated at

monitoring point m₂, tonnes C

 $C_{BB, ml, ijk}$ carbon stock in belowground biomass for stratum i sub-stratum j species k, calculated at

monitoring point m₁, tonnes C

ration of molecular weights of carbon and CO₂, dimensionless

T number of years between monitoring point m_2 and m_1 , which in this methodology is 5

years.

For the first monitoring, the first biomass measurement could be omitted, because it is zero.

The total carbon stock in living biomass for each stratum and sub-stratum in each monitoring point (m) is calculated from the area of each stratum and sub-stratum and mean carbon stock in aboveground biomass and belowground biomass per unit area, given by:

$$C_{AB,m,ijk} = A_{ijk} \cdot MC_{AB,m,ijk} \tag{7}$$

$$C_{BB,m,ijk} = A_{ijk} \cdot MC_{BB,m,ijk} \tag{8}$$

_

¹⁵ Refers to GPG-LULUCF Equation 3.2.3

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

where:

 $\Delta C_{AB,ijk,t}$ changes in carbon stock in aboveground biomass for stratum i sub-stratum j species k,

tonnes C yr⁻¹ in year t

 $\Delta C_{BB,ijk,t}$ changes in carbon stock in belowground biomass for stratum i sub-stratum j species k,

tonnes C yr⁻¹ in year t

 A_{ijk} area of stratum *i* sub-stratum *j* species k, hectare (ha)

 $MC_{AB.m.iik}$ mean carbon stock in aboveground biomass per unit area for stratum i sub-stratum j

species k, tonnes C ha⁻¹

 $MC_{BB,m,iik}$ mean carbon stock in belowground biomass per unit area for stratum i sub-stratum j

species k, tonnes C ha⁻¹

The mean carbon stock in aboveground biomass and belowground biomass per unit area is estimated based on field measurements on permanent plots. This can be estimated using two methods, i.e., Biomass Expansion Factors (BEF) method and Allometric Equations method.

BEF Method

Step 1: Measuring the diameter at breast height (DBH, at 1.3 m above ground) and preferably height of all the trees in the permanent sample plots above a minimum DBH. The minimum DBH varies depending on tree species and climate, for instance, the minimum DBH may be as small as 2.5 cm in arid environments where trees grow slowly, whereas it could be up to 10 cm for humid environments where trees grow rapidly (GPG-LULUCF).

Step 2: Estimating the volume of the commercial component of trees based on locally derived equations, expressed as volume per unit area (e.g., m³/ha). It is also possible to combine step 1 and step 2 if there are field instruments (e.g. relascope) that measure volume of each tree directly.

Step 3: Choosing BEF and root-shoot ratio: The BEF and root-shoot ratio vary with local environmental conditions, species and age of trees, the volume of the commercial component of trees. These parameters can be determined by either developing a local regression equation or selecting from national inventory, Annex 3A.1 Table 3A.1.10 of GPG LULUCF, or from published sources. If a significant amount of effort is required to develop local BEFs and root-shoot ratio, involving, for instance, harvest of trees, then it is recommended not to use this method but rather to use the resources to develop local allometric equations as described in the allometric method below (refers to Chapter 4.3 in GPG LULUCF). If that is not possible either, national species specific defaults are for BEF and R can be used. Since both BEF and the root-shoot ratio are age dependent, it is desirable to use age-dependent equations. Stemwood volume can be very small in young stands and BEF can be very large, while for old stands BEF is usually significantly smaller. Therefore using average BEF value may result in significant errors for both young stands and old stands. It is preferable to use allometric equations, if the equations are available, and as a second best solution, to use age-dependent BEFs (but for very young trees, multiplying a small number for stemwood with a large number for the BEF can result in significant error).

Step 4: Converting the volume of the commercial component of trees into carbon stock in aboveground biomass and belowground biomass via basic wood density, BEF root-shoot ratio and carbon fraction, given by ¹⁶:

¹⁶ Refers to GPG LULUCF Equation 4.3.1

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$$MC_{AB} = V \cdot D \cdot BEF \cdot CF$$
 (9)

$$MC_{RR} = MC_{AR} \cdot R \tag{10}$$

where:

 MC_{AB} mean carbon stock in aboveground biomass, tonnes C ha⁻¹ mean carbon stock in belowground biomass, tonnes C ha⁻¹

V merchantable volume, m³ ha⁻¹

D volume-weighted average wood density, tonnes d.m. m⁻³ merchantable volume

BEF biomass expansion factor for conversion of biomass of merchantable volume to

aboveground biomass, dimensionless.

CF carbon fraction, tonnes C (tonne $\frac{d.m.}{}^{-1}$, IPCC default value = 0.5.

R Root-shoot ratio, dimensionless

Allometric method

Step 1: As with the step 1 in BEF method, the diameter and preferably height of all trees above some minimum diameter is measured.

Step 2: Choosing or establishing appropriate allometric equations.

$$B_{AB} = f(DBH, H) \tag{11}$$

where:

 B_{AB} aboveground biomass, tonnes d.m. ha⁻¹

 $f_i(DBH,H)$ an allometric equation linking above ground biomass (d.m. ha⁻¹) to diameter at breast

height (DBH) and possibly tree height (H).

The allometric equations are preferably local-derived and species-specific. When allometric equations developed from a biome-wide database, such as those in Annex 4A.2, Tables 4.A.1 and 4.A.2 of GPG LULUCF, are used, it is necessary to verify by destructively harvesting, within the project area but outside the sample plots, a few trees of different sizes and estimate their biomass and then compare against a selected equation. If the biomass estimated from the harvested trees is within about $\pm 10\%$ of that predicted by the equation, then it can be assumed that the selected equation is suitable for the project. If this is not the case, it is recommended to develop local allometric equations for the project use. For this, a sample of trees, representing different size classes, is destructively harvested, and its total biomass is determined. The number of trees to be destructively harvested and measured depends on the range of size classes and number of species—the greater the heterogeneity the more trees are required. If resources permit, the carbon content can be determined in the laboratory. Finally, allometric equations are constructed relating the biomass with values from easily measured variables, such as the DBH and total height (see Chapter 4.3 in GPG LULUCF). Also generic allometric equations can be used, as long as it can be proven that they are wrong on the conservative side, i.e., they underestimate carbon sequestration.

Step 3: Estimating carbon stock in aboveground biomass using selected allometric equations applied to the tree measurements in Step 1.

$$MC_{AB} = B_{AB} \cdot CF \tag{12}$$

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

where:

*MC*_{AB} mean carbon stock in aboveground biomass, tonnes C ha⁻¹

 B_{AB} aboveground biomass, tonnes d.m. ha⁻¹

CF carbon fraction, tonnes C (tonne d.m.) $^{-1}$, IPCC default value = 0.5.

Step 4: Estimating carbon stock in belowground biomass using above described equation (10) and total carbon stock in biomass.

(b) GHG emissions by sources

The increase in GHG emission as a result of the implementation of the proposed A/R CDM project activity within the project boundary can be estimated by:

$$GHG_{E,t} = E_{FuelBurn,t} + E_{biomassloss,t} + E_{Non-CO_2,BiomassBurn,t} + N_2O_{direct-N_{foreiliver},t}$$
(13)

where:

 $GHG_{E,t}$ the increase in GHG emission as a result of the implementation of the proposed

A/R CDM project activity within the project boundary, tonnes CO_2 -e yr^{-1} in year t

 $E_{FuelBurn,t}$ the increase in GHG emission as a result of burning of fossil fuels within the

project boundary, tonnes CO_2 -e yr⁻¹ in year t

 $E_{biomassloss,t}$ Decrease in carbon stock in living biomass of existing non-tree vegetation tonnes

 CO_2 -e yr⁻¹ in year t

 $E_{Non-CO2,BiomassBurn,t}$ the increase in Non-CO₂ emission as a result of biomass burning within the pro-

ject boundary, tonnes CO_2 -e yr⁻¹ in year t

 $N_2O_{direct-N_{Gardloor}t}$ the increase in N_2O emission as a result of direct nitrogen application within the

project boundary, tonnes CO₂-e yr⁻¹ in year t

(i) GHG emissions from burning of fossil fuel

In the context of the afforestation or reforestation, the increase in GHG emission by burning of fossil fuels is most likely resulted from machinery use during site preparation, thinning and logging.

Step 1: Monitoring the type and amount of fossil fuels consumed in site preparation and/or logging.

Step 2: Choosing emission factors. There are three possible sources of emission factors:

- National emission factors: These emission factors may be developed by national programmes such as national GHG inventory;
- Regional emission factors;
- IPCC default emission factors, provided that a careful review of the consistency of these factors
 with the country conditions has been made. IPCC default factors may be used when no other
 information is available.

Step 3: Estimating of GHG emissions resulted from the burning of fossil fuel during site preparation and logging. Although some non-CO₂ GHG (CO, CH₄, NMVOCs) may be released during combustion process, all the released carbon are accounted as CO₂ emissions based on the Revised 1996 IPCC Guidelines for energy:

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$$E_{FuelBurn,t} = (CSP_{diesel,t} \cdot EF_{diesel} + CSP_{gasoline,t} \cdot EF_{gasoline}) \cdot 0.001$$
(14)

where:

 $E_{FuelBurn,t}$ the increase in GHG emission as a result of burning of fossil fuels within the

project boundary, tonnes CO_2 -e yr⁻¹ in year t

 $CSP_{diesel,t}$ amount of diesel consumption, litre (l) yr^{-1} in year t amount of gasoline consumption, l yr^{-1} in year t

 EF_{diesel} emission factor for diesel, kg CO₂ l⁻¹ emission factor for gasoline, kg CO₂ l⁻¹

0.001 conversion kg to tonnes

(ii) Decrease in carbon stock in living biomass of existing non-tree vegetation

It is assumed that all existing non-tree vegetation will disappear due to site preparation including slash and burn, or competition from planted trees.

Step 1: Measuring and estimating the above- and below-ground biomass of existing non-tree vegetation. This task shall be conducted before the start of project activity. The herbaceous plants can be measured by simple harvesting techniques. A small frame (either circular or square), usually encompassing about 0.5-1.0 m₂ or less, is used to aid this task. The material inside the frame is cut to ground level and weighed, and the underground part is also dug and weighed. Well-mixed samples are then collected and oven dried to determine dry-to-wet matter ratios. These ratios are then used to convert the entire sample to oven-dry matter. For shrubs, destructive harvesting techniques can also be used to measure the living biomass. An alternative approach, if the shrubs are large, is to develop local shrub allometric equations based on variables such as crown area and height or diameter at base of plant or some other relevant variable (e.g., number of stems in multi-stemmed shrubs). The equations would then be based on regressions of biomass of the shrub versus some logical combination of the independent variables. The independent variables would then be measured in the sampling plots (Refers to Chapter 4.3 in GPG LULUCF).

Step 2: Estimating decrease in carbon stock of existing non-tree vegetation

$$E_{biomassloss,t} = \sum_{i} A_{i} \cdot B_{non-tree,i} \cdot CF_{non-tree} \cdot 44/12 \quad \forall t = 1$$

$$E_{biomassloss,t} = 0 \quad \forall t > 1$$
(15)

where:

 $E_{biomassloss,t}$ Decrease in carbon stock in living biomass of existing non-tree vegetation tonnes

 CO_2 -e yr⁻¹ in year t

 A_i area of stratum i, ha

 $B_{non-tree,i}$ average biomass stock of non-tree vegetation on land to be planted before the start

of a proposed A/R CDM project activity for stratum i, tonnes d.m. ha⁻¹

 $CF_{non-tree}$ the carbon fraction of dry biomass in non-tree vegetation, tonnes C (tonne d.m.)

ration of molecular weights of CO₂ and carbon, dimensionless

(iii) GHG emissions from biomass burning

Executive Board

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

Slash and burn or removal of pre-existing vegetation occurs traditionally in some regions during site preparation before planting and/or replanting. Since CO₂ emission has already in above bullet, only non-CO₂ emissions are accounted here.

Step 1: Estimating the mean aboveground biomass stock per unit area before slash and burn. The degraded land or logged land is usually dominated by herbaceous plants and shrubs. Therefore this value can be obtained from step 1 of the last bullet.

Step 2: Estimating combustion efficiencies and emission factors. The combustion efficiencies may be chosen from Table 3.A.14 of GPG-LULUCF. If no appropriate combustion efficiency can be used, the IPCC default of 0.5 should be used. The nitrogen-carbon ratio (N/C ratio) is approximated to be about 0.01. This is a general default value that applies to leaf litter, but lower values would be appropriate for fuels with greater woody content, if data are available. Emission factors for use with above equations are provided in Tables 3.A 15 and 3.A.16 of GPG-LULUCF.

Step 3: Estimating of GHG emissions resulted from the slash and burn based on revised IPCC 1996 Guideline for LULUCF and GPG LULUCF:

$$E_{Non-CO_2,BiomassBurn,t} = E_{BiomassBurn,N_2O} + E_{BiomassBurn,CH_4} \quad \forall t = 1$$

$$E_{Non-CO_2,BiomassBurn,t} = 0 \quad \forall t > 1$$
(16)

where:

 $E_{Non-CO2,BiomassBurn,t}$ the increase in Non-CO₂ emission as a result of biomass burning in slash and

burn, tonnes CO₂-e yr⁻¹ at start of the project

N₂O emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹ $E_{BiomassBurn, N2O}$ CH₄ emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹ $E_{BiomassBurn.\ CH4}$

$$E_{BiomassBurn,N_2O} = E_{BiomassBurn,C} \cdot (N/C \, ratio) \cdot ER_{N2O} \cdot 44/28 \cdot GWP_{N2O}$$
 (17)

$$E_{\textit{BiomassBurn},CH_4} = E_{\textit{BiomassBurn},C} \cdot ER_{\textit{CH}4} \cdot 16/12 \cdot GWP_{\textit{CH}4}$$
 (18)

where 17:

N₂O emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹ $E_{BiomassBurn, N2O}$ CH₄ emission from biomass burning in slash and burn, tonnes CO₂-e yr⁻¹ $E_{BiomassBurn, CH4}$ loss of aboveground biomass carbon due to slash and burn, t C yr⁻¹ $E_{BiomassBurn.C}$ N/C ratio nitrogen-carbon ratio, dimensionless

44/28 ration of molecular weights of N₂O and nitrogen, dimensionless 16/12 ration of molecular weights of CH₄ and carbon, dimensionless

 ER_{N2O} IPCC default emission ratio for $N_2O = 0.007$ IPCC default emission ratio for $CH_4 = 0.012$ ER_{CH4}

Global Warming Potential for N_2O , kg CO_2e (kg N_2O)⁻¹ (IPCC default = 310, GWP_{N2O}

valid for the first commitment period)

Global Warming Potential for CH₄, kg CO₂e (kg CH₄)⁻¹ (valid for the first com-GWP_{CH4}

mitment period)

¹⁷ Refers to Table 5.7 in 1996 Revised IPCC Guideline for LULUCF and Equation 3.2.19 in GPG LULUCF

31

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$$E_{BiomassBurn,C} = \sum_{i} A_{burn,i} \cdot B_{i} \cdot CE \cdot CF$$
 (19)

where:

 $E_{BiomassBurn,C}$ loss of aboveground biomass carbon due to slash and burn, t C yr⁻¹

 $A_{burn,i}$ area of slash and burn for stratum i, ha yr⁻¹

 B_i average aboveground stock in living biomass before burning for stratum i, tonnes

d.m. ha⁻¹

CE combustion efficiency, dimensionless, IPCC default 0.5

CF carbon fraction of dry biomass, tonnes C (tonne d.m.) 1 , IPCC default = 0.5

(iv) Nitrous oxide emissions from nitrogen fertilization practices

Only direct N₂O emissions from nitrogen fertilization are monitored and estimated in this methodology, because indirect N₂O emissions (e.g., leaching and runoff) are smaller in forest than in agricultural land and the emission factor used in the 1996 IPCC Guidelines appears to be high (GPG LULUCF). The method of 1996 IPCC Guideline, GPG-2000 and GPG LULUCF can be used to estimate the direct N₂O emissions.

Step 1: Monitoring and estimating the amount of nitrogen in synthetic and organic fertilizer used within the project boundary;

$$N_{SN-Fert,t} = \sum_{k} A_k \cdot N_{SN-Fert,k,t} \cdot 0.001$$
 (20)

$$N_{ON-Fert,t} = \sum_{k} A_k \cdot N_{ON-Fert,k,t} \cdot 0.001$$
 (21)

where:

 $N_{SN-Fert,t}$ total use of synthetic fertiliser within the project boundary, tonnes N yr⁻¹ in year t total use of organic fertiliser within the project boundary, tonnes N yr⁻¹ in year t area of tree species k with fertilization, ha yr⁻¹ use of synthetic fertiliser per unit area for tree species k, kg N ha⁻¹ yr⁻¹ in year t use of organic fertiliser per unit area for tree species k, kg N ha⁻¹ yr⁻¹ in year t only or total use of synthetic fertiliser per unit area for tree species k, kg N ha⁻¹ yr⁻¹ in year t only or total use of organic fertiliser per unit area for tree species k, kg N ha⁻¹ yr⁻¹ in year t only or total use of organic fertiliser within the project boundary, tonnes N yr⁻¹ in year t

Step 2: Choosing the fractions of synthetic and organic fertiliser nitrogen that is emitted as NO_X and NH_3 , and emission factors. As noted in GPG 2000 and 1996 IPCC Guideline, the default emission factor is 1.25 % of applied N, and this value should be used when country-specific factors are unavailable. Project developer may develop specific emission factors that are more appropriate for their project. Specific good practice guidance on how to derive specific emission factors is given in Box 4.1 of GPG 2000. The default values for the fractions of synthetic and organic fertiliser nitrogen that are emitted as NO_X and NH_3 are 0.1 and 0.2 respectively in 1996 IPCC Guideline¹⁸.

Step 3: Calculating direct N₂O emissions from nitrogen fertilization¹⁹

¹⁸ Refers to table 4-17 and table 4-18 in 1996 IPCC Guideline

¹⁹ Refers to Equation 3.2.18 in IPCC GPG-LULUCF, Equation 4.22 and Equation 4.23 in GPG-2000

AR-AM0001 / Version 02

Sectoral Scope: 14 19 May 2006

UNFCCC

$$N_2 O_{direct-N_{fertilizer,t}} = \left[(F_{SN} + F_{ON}) \cdot EF_1 \right] \cdot 44/28 \cdot GWP_{N20}$$

$$(22)$$

$$F_{SN} = N_{SN-Fert,t} \cdot (1 - Frac_{GASF})$$

$$(23)$$

 $F_{ON} = N_{ON-Fert,t} \cdot (1 - Frac_{GASM}) \tag{24}$

where:

 $N_2O_{direct-N_{fornilizer},t}$ the direct N_2O emission as a result of nitrogen application within the project

boundary during monitoring interval, tonnes CO₂-e yr⁻¹ in year t

 F_{SN} Amount of synthetic fertilizer nitrogen applied adjusted for volatilization as NH₃

and NO_X, tonnes N yr⁻¹

 F_{ON} Annual amount of organic fertilizer nitrogen applied adjusted for volatilization

as NH₃ and NO_X, tonnes N yr⁻¹

 $N_{SN-Fert}$ Amount of synthetic fertilizer nitrogen applied, tonnes N yr⁻¹ Amount of organic fertilizer nitrogen applied, tonnes N yr⁻¹

 EF_1 Emission Factor for emissions from N inputs, tonnes N_2O-N (tonnes N input)⁻¹ the fraction that volatilises as NH_3 and NO_X for synthetic fertilizers, dimen-

sionless

Frac $_{GASF}$ the fraction that volatilises as NH₃ and NO_X for organic fertilizers, dimensionless

ration of molecular weights of N₂O and nitrogen, dimensionless

 GWP_{N2O} Global Warming Potential for N₂O₂ kg CO₂e (kg N₂O)⁻¹ (IPCC default = 310,

valid for the first commitment period)

AR-AM0001 / Version 02
Sectoral Scope: 14
19 May 2006

UNFCCC

6. Data to be collected and archived for Actual net GHG removals by sinks

Data to be collected or used in order to monitor the verifiable changes in carbon stock in the carbon pools within the project boundary from the

proposed A/R CDM project activity, and how this data will be archived:

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.01	Stratum ID	Stratifica- tion map	Alpha nu- meric		Before the start of the project	100%	Each stratum has a particular combination of soil type, climate, and possibly tree species
2.1.1.02	Stratum ID	Stratifica- tion map	Alpha nu- meric		Before the start of the project	100%	Each sub-stratum has a particular year to be planted under each stratum
2.1.1.03	Confidence level		%		Before the start of the project	100%	For the purpose of QA/QC and measuring and monitoring precision control
2.1.1.04	Precision level		%		Before the start of the project	100%	For the purpose of QA/QC and measuring and monitoring precision control
2.1.1.05	Standard deviation of each stratum			e	Before the start of the project	100%	Used for estimating numbers of sample plots of each stratum and sub-stratum
2.1.1.06	Number of sample plots			С	Before the start of the project	100%	For each stratum and sub-stratum, calculated from 2.1.1.03-2.1.1.05 using equation (1)-(2)
2.1.1.07	Sample plot ID	Project and plot map	Alpha numeric		Before the start of the project	100%	Numeric series ID will be assigned to each permanent sample plot

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.08	Plot location	Project and plot map and GPS locating		m	5 years	100%	Using GPS to locate before start of the project and at time of each field measurement
2.1.1.09	Tree species	Project design map			5 years	100%	Arranged in CDM-AR-PDD
2.1.1.10	Age of plantation	Plot meas- urement	year	m	5 years	100% sam- pling plot	Counted since the planted year
2.1.1.11	Number of trees	Plot meas- urement	number	m	5 years	100% trees in plots	Counted in plot measurement
2.1.1.12	Diameter at breast height (DBH)	Plot measure- ment	cm	m	5 year	100% trees in plots	Measuring at each monitoring time per sampling method
2.1.1.13	Mean DBH	Calculated from 2.1.1.12	cm	С	5 year	100% of sampling plots	Calculated from 2.1.1.11 and 2.1.1.12
2.1.1.14	Tree height	Plot measure- ment	m	m	5 year	100% trees in plots	Measuring at each monitoring time per sampling method
2.1.1.15	Mean tree height	Calculated from 2.1.1.14	m	С	5 year	100% of sampling plots	Calculated from 2.1.1.11 and 2.1.1.14

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.16	Merchant- able volume	Calculated or plot measure- ment	m ^{3.} ha ⁻¹	c/m	5 year	100% of sampling plots	Calculated from 2.1.1.13 and possibly 2.1.1.15 using local-derived equations, or directly measured by field instrument
2.1.1.17	Wood den- sity	Local- derived, national inventory, GPG for LULUCF	t d.m. m ⁻³	е	5 year	100% of sampling plots	Local-derived and species-specific value have the priority
2.1.1.18	Biomass expansion factor (BEF)	Local- derived, national inventory, GPG for LULUCF	dimen- sionless	e	5 year	100% of sampling plots	Local-derived and species-specific value have the priority
2.1.1.19	Carbon fraction	Local, national, IPCC	t C.(t d.m.) ⁻¹	e	5 year	100% of sampling plots	Local-derived and species-specific value have the priority
2.1.1.20	Root-shoot ratio	Local- derived, national inventory, GPG for LULUCF	Dimen- sionless	e	5 year	100% of sampling plots	Local-derived and species-specific value have the priority

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.21	Carbon stock in above- ground biomass of plots	Calculated from equa- tion	t C ha ⁻¹	С	5 year	100% of sampling plots	Calculated from equation (9) via 2.1.1.16-2.1.1.19, or from equation (11) and (12) via 2.1.1.13, 2.1.1.15 and 2.1.1.19
2.1.1.22	Carbon stock in below- ground biomass of plots	Calculated from equa- tion	t C ha ⁻¹	С	5 year	100% of sampling plots	Calculated from equation (10) via 2.1.1.20-2.1.1.21, or equation (10) via 2.1.1.19 and 2.1.1.21
2.1.1.23	Mean Carbon stock in aboveground biomass per unit area per stratum per species	Calculated from plot data	t C ha ⁻¹	С	5 year	100% of strata and sub-strata	Calculated from 2.1.1.06-2.1.1.21

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.24	Mean Carbon stock in below-ground biomass per unit area per stratum per species	Calculated from plot data	t C ha ⁻¹	c	5 year	100% of strata and sub-strata	Calculated from 2.1.1.06 and 2.1.1.22
2.1.1.25	Area of stratum and sub-stratum	Stratifica- tion map and data	ha	m	5 year	100% of strata and sub-strata	Actual area of each stratum and sub-stratum
2.1.1.26	Carbon stock in above- ground biomass of stratum per species	Calculated from equa- tion (7)	t C	С	5 year	100% of strata and sub-strata	Calculated from equation (7) via 2.1.1.23 and 2.1.1.25
2.1.1.27	Carbon stock in below-ground biomass of r stratum per species	Calculated from equa- tion (8)	t C	С	5 year	100% of strata and sub-strata	Calculated from equation (8) 2.1.1.24 and 2.1.1.25

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recording frequency	Pro-portion of data monitored	Comment
2.1.1.28	Carbon stock change in above- ground biomass of stratum per species	Calculated from equa- tion (5)	t C yr ⁻¹	С	5 year	100% of strata and sub-strata	Calculated from equation (5) via 2.1.1.26
2.1.1.29	Carbon stock change in below- ground biomass of stratum per species	Calculated from equa- tion (6)	t C yr ⁻¹	С	5 year	100% of strata and sub-strata	Calculated from equation (6) 2.1.1.27
2.1.1.30	Total carbon stock change	Calculated from equation (4)	t CO ₂ -e yr ⁻¹	С	5 year	100% project area	Summing up carbon stock change in 2.1.1.28 and 2.1.1.29 for all strata, substrata and tree species

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

Data to be collected or used in order to monitor the GHG emissions by the sources, measured in units of CO2 equivalent, that are increased as a re-

sult of the implementation of the proposed A/R CDM project activity within the project boundary, and how this data will be archived:

ID number	Data variable	Source of data	Data unit	Measured (m), cal- culated (c) or esti- mated (e)	Recording frequency	Proportion of data to be monitored	Comment
2.1.2.01	Amount of die- sel consumed in machinery use for site prep, thinning or logging	On-site monitoring	litre	m	annually	100%	Measuring either diesel consumption per unit area for site preparation, or per unit volume logged or thinned
2.1.2.02	Amount of gasoline con- sumed in ma- chinery use for site prep, thin- ning or logging	On-site monitoring	litre	m	annually	100%	Measuring either diesel consumption per unit area for site preparation, or per unit volume logged or thinned
2.1.2.03	Emission factor for diesel	GPG 2000, IPPCC Guidelines, national in- ventory	kg/ litre	e	At begin- ning of the project	100%	National inventory value should has priority

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data variable	Source of data	Data unit	Measured (m), cal- culated (c) or esti- mated (e)	Recording frequency	Proportion of data to be monitored	Comment
2.1.2.04	Emission factor for gasoline	GPG 2000, IPPCC Guidelines, national in- ventory	kg/ litre	e	At begin- ning of the project	100%	National inventory value should has priority
2.1.2.05	Emission from fossil fuel use within project boundary	Calculated from equation (14)	t CO ₂ -e yr ⁻¹	e	annually	100%	Calculating using equation (14) via 2.1.2.01-2.1.2.04
2.1.2.06	Area of slash and burn	Measured during implementa- tion	ha	m	annually	100%	Measured for different strata and substrata
2.1.2.07	Mean biomass stock per unit area before slash and burn	Measured before slash and burn	t d.m. ha ⁻¹	m	Annually	100%	Sampling survey for different strata and sub-strata before slash and burn
2.1.2.08	Proportion of biomass burnt	Measured after slash and burn	dimen- sionless	m	Annually	100%	Sampling survey after slash and burn
2.1.2.09	Biomass combustion effi- ciency	GPG LULUCF National inventory	dimen- sionless	e	Before the start of the project	100%	IPCC default value (0.5) is used if no appropriate value

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data variable	Source of data	Data unit	Measured (m), cal- culated (c) or esti- mated (e)	Recording frequency	Proportion of data to be monitored	Comment
2.1.2.10	Carbon fraction	Local, national, IPCC	t C.(t d.m.) ⁻¹	e	5 year	100%	2.1.1.19 can be used if no appropriate value
2.1.2.11	Loss of above- ground biomass carbon due to slash and burn	Calculated using equation (19)	t C yr ⁻¹	С	5 year	100%	Calculated using equation (19)
2.1.2.12	N/C ratio	GPG LULUCF National inventory, publications	dimen- sionless	e	Before the start of the project	100%	IPCC default value (0.01) is used if no appropriate value
2.1.2.13	N ₂ O emission from biomass burn	Calculated using equation (17)	t CO ₂ -e yr ⁻¹	С	5 year	100%	Calculated using equation (17) via 2.1.2.11-2.1.2.12
2.1.2.14	CH ₄ emission from biomass burn	Calculated using equation (18)	t CO ₂ -e yr ⁻¹	С	5 year	100%	Calculated using equation (18) via 2.1.2.11
2.1.2.15	the increase in Non-CO ₂ emission as a result of biomass burning in slash and burn	Calculated using equa- tion (16)	t CO ₂ -e yr ⁻¹	С	5 year	100%	Calculated using equation (16) via 2.1.2.11, 2.1.2.13, 2.1.2.14

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

ID number	Data variable	Source of data	Data unit	Measured (m), cal- culated (c) or esti- mated (e)	Recording frequency	Proportion of data to be monitored	Comment
2.1.2.16	Amount of synthetic fertil- izer N applied per unit area	Monitoring activity	kg N ha ⁻¹ yr ⁻	m	annually	100%	For different tree species and/or management intensity
2.1.2.17	Amount of organic fertilizer N applied per unit area	Monitoring activity	kg N ha ⁻¹ yr ⁻	m	annually	100%	For different tree species and/or management intensity
2.1.2.18	area of land with N applied	Monitoring activity	ha yr ⁻¹	m	annually	100%	For different tree species and/or management intensity
2.1.2.19	Amount of synthetic fertil- izer N applied	Calculated using equation (20)	t N yr ⁻¹	С	annually	100%	Calculated using equation (20) via 2.1.2.16 and 2.1.2.18
2.1.2.20	Amount of organic fertilizer N applied	Calculated using equation (21)	t N yr ⁻¹	С	annually	100%	Calculated using equation (21) via 2.1.2.17 and 2.1.2.18
2.1.2.21	Fraction that volatilises as NH ₃ and NO _x for synthetic fertilizers	GPG 2000, GPG LULUCF, IPCC Guide- line National inventory	dimen- sionless	e	Before start of monitor- ing	100%	IPCC default value (0.1) is used if no more appropriate data

AR-AM0001 / Version 02
Sectoral Scope: 14
19 May 2006

UNFCCC

ID number	Data variable	Source of data	Data unit	Measured (m), cal- culated (c) or esti- mated (e)	Recording frequency	Proportion of data to be monitored	Comment
2.1.2.22	Fraction that volatilises as NH ₃ and NO _X for organic fertilizers	GPG 2000, GPG LULUCF, IPCC Guide- lines National inventory	dimen- sionless	е	Before start of monitor- ing	100%	IPCC default value (0.2) is used if no more appropriate data
2.1.2.23	Emission factor for emission from N input	GPG 2000, GPG LULUCF, IPCC Guide- lines National inventory	N ₂ O N- input ⁻¹	e	Before start of monitor- ing	100%	IPCC default value (1.25%) is used if no more appropriate data
2.1.2.24	Direct N ₂ O emission of N input	Calculated using equa- tion (22)	t CO ₂ -e yr ⁻¹	С	annually	100%	Calculated using equation (22) via 2.1.2.19-2.1.2.23
2.1.2.25	Total increase in GHG emission	Calculated using equa- tion (13)	t CO ₂ -e yr ⁻¹	С	annually	100%	Calculated using equation (13) via 2.1.2.05, 2.1.2.11, 2.1.2.15 and 2.1.2.24

7. Leakage

The leakage represents the increase in GHG emissions by sources which occurs outside the boundary of an A/R CDM project activity which is measurable and attributable to the A/R CDM project activity. Land used for reforestation is abandoned, economical unattractive land rather than forested land, agricultural land or grazing land, thus, as the result of an A/R CDM project activity, deforestation, agricultural or pastoral activities will not be displaced from

AR-AM0001 / Version 02
Sectoral Scope: 14

Sectoral Scope: 14 19 May 2006

the project sites to other locations. As per the conditions in section B, the proposed A/R CDM project activity will provide as the same amount of fuel for local people, so the there is no displace of fuel collection. However, in the context of A/R activities, fossil fuel combustion from vehicles use due to the transportation of seedling, labours, staff, harvest products, to and/or from project sites, as a result of the proposed A/R CDM project activity, emits greenhouse gases. This can be monitored and estimated using IPCC bottom-up approach.

Step 1: Collecting the travelled distance of different types of vehicles using different fuel types.

Step 2: Determining emission factors for different types of vehicles using different fuel types. Country-specific emission factors shall be developed and used if possible. Default emission factors provided in the IPCC Guidelines and updated in the GPG 2000 may be used if there are no locally available data.

Step 3: Estimating the CO₂ emissions using bottom-up approach described in GPG 2000 for energy sector²⁰.

$$LK_{t} = \sum_{i} \sum_{j} (EF_{ij} \cdot FuelConsumption_{ij,t}) \cdot 0.001$$
(25)

FuelConsumption_{ii,t} =
$$n_{ii,t} \cdot k_{ii,t} \cdot e_{ii,t}$$
 (26)

where:

 LK_t CO₂ emissions due to fossil fuel combustion from vehicles, tonnes CO₂-e yr⁻¹ in year t

i vehicle typej fuel type

 EF_{ij} emission factor for vehicle type i with fuel type j, kg CO_2 -e l⁻¹ FuelConsumption_{ij} consumption of fuel type j of vehicle type i, litre yr⁻¹ in year t

 n_{ij} number of vehicle type i used, yr^{-1} in year t

 k_{ij} kilometres travelled annually by each of vehicle type i with fuel type j, km yr⁻¹ in year t

 e_{ii} average litres consumed per kilometre travelled for vehicle type i with fuel type j, litre km⁻¹in year t

²⁰ Refer to Equation 2.5 and Equation 2.6 in IPCC GPG 2000 for energy sector

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

UNFCCC

8. Data to be collected and archived for leakage

Data and information that will be collected in order to monitor leakage of the proposed A/R CDM project activity:

ID number	Data Variable	Source of data	Data unit	Measured (m) calculated (c) estimated (e)	Recordin g fre- quency	Pro-portion of data monitored	Comment
3.1.01	Number of each vehicle type used	Monitoring of project activity	num- ber		Annually	100%	Monitoring number of each vehicle type used
3.1.02	Emission factors for road trans- portation	GPG 2000, IPCC Guidelines, national inventory	kg CO ₂ -e l ⁻¹	е	Annually	100%	National or local value has the priority
3.1.03	Kilometres travelled by vehicles	Monitoring of project activity	km	m	Annually	100%	Monitoring kilometres for each vehicle type and fuel type used
3.1.04	Fuel con- sumption per km	Local data, national data, IPCC	litre km ⁻¹	е	5 years	100%	estimated for each vehicle type and fuel type used
3.1.05	Fuel consumption for road transportation	Calculated using equation (27)	litre	С	Annually	100%	Calculated using equation (27) via 3.1.01, 3.1.03, 3.1.04
3.1.06	Leakage due to vehicle use for transpor- tation	Calculated using equation (26)	t CO ₂ - e yr ⁻¹	С	Annually	100%	Calculated using equation (26) via 3.1.02, 3.1.05

AR-AM0001 / Version 02 Sectoral Scope: 14

19 May 2006

UNFCCC

9. Ex post net anthropogenic GHG removal by sinks

The net anthropogenic GHG removals by sinks is the actual net GHG removals by sinks minus the baseline net GHG removals by sinks minus leakage, therefore, following general formula can be used to calculate the net anthropogenic GHG removals by sinks of an A/R CDM project activity (C_{AR-CDM}), in tonnes CO₂-e yr⁻¹:

$$C_{AR-CDM} = \Delta C_{ACTUAL} - \Delta C_{BSL} - LK_{Vehicle\ CO2}$$
 (27)

where:

 C_{AR-CDM} net anthropogenic greenhouse gas removals by sinks, tonnes CO₂-e yr⁻¹

 C_{ACTUAL} actual net GHG removals by sinks, tonnes CO₂-e yr⁻¹ baseline net GHG removals by sinks, tonnes CO₂-e yr⁻¹

*LK*_{Vehicle,CO2} total GHG emissions due to fossil fuel combustion from vehicles, tonnes CO₂-e

yr-1

Ways of calculating t-CER and l-CER:

t-CERs reflect the existing stock change at the time of verification minus project emissions minus leakage (t CO₂):

$$t - CER(t_v) = C_P(t_v) - C_B(t_v) - \sum_{i=0}^{t_v} E_i - \sum_{i=0}^{t_v} LK_i$$
(28)

$$C_P(t_v) - \sum_{0}^{t_v} E_t = \sum_{1}^{t_v} \Delta C_{Actual, t}$$

$$C_B(t_v) = \sum_{1}^{t_v} \Delta C_{BSL, t}$$

l-CERs reflect the *increment of the stock change* at the time of verification minus project emissions minus leakage compared to the existing stock change at the previous time of verification (t CO₂):

$$l - CER(t_v) = [C_P(t_v) - C_P(t_v - \kappa)] - [C_B(t_v) - C_B(t_v - \kappa)] - \sum_{t=0}^{t_v} E_t - \sum_{t=0}^{t_v} LK_t$$
(29)

$$C_P(t_v) - C_P(t_v - \kappa) - \sum_{t_{v-\kappa}}^{t_v} E_t = \sum_{t_{v-\kappa}}^{t_v} \Delta C_{Actual, t}$$

$$C_B(t_v) - C_B(t_v - \kappa) = \sum_{t_{v-\kappa}}^{t_v} \Delta C_{BSL, t}$$

where:

t-CER(t_v) t-CERs issued at year of verification t_v (t CO₂) l-CER(t_v) l-CERs issued at year of verification t_v (t CO₂)

 $C_P(t_v)$ Existing carbon stocks at the year of verification t_v (t CO₂)

 $C_B(t_v)$ Estimated carbon stocks of the baseline scenario at year of verification t_v (t CO₂)

AR-AM0001 / Version 02 Sectoral Scope: 14

19 May 2006

E(t) Annual project emissions (t CO_2)

LK(t) Annual leakage (t CO₂) t_v Year of verification

 κ Time span between two verification occasions (year)

10. Uncertainties

(a) Uncertainties to be considered

This methodology uses methods from IPCC GPG-LULUCF, GPG 2000, as well as related rules for A/R CDM project activities to estimate the baseline net GHG removals by sinks, the leakage, the actual net GHG removals by sinks and the net anthropogenic GHG removals by sinks. Potential uncertainties arise from emission factors and sampling surveys. These uncertainties and their countermeasures are elaborated below.

- (i) Uncertainties arising from, for example, biomass expansion factors (BEFs) or basic wood density would result in uncertainties in the estimation of both the baseline net GHG removals by sinks and the actual net GHG removals by sinks, especially when global default values are used. This methodology recommends project participants to identify key parameters that would significantly influence the estimation results, and to try to develop local values for key factors using various data sources including direct measurement, and/or to choose conservative values.
- (ii) Uncertainties arising from sample survey (statistical uncertainties): The sampling error for each stratum may result from large spatial variability. Therefore an appropriate sampling protocol is necessary, including sufficient number of samples, variation and uncertainty analysis, sound quality control and quality assurance.

(b) Uncertainty assessment

The percentage uncertainty on the estimate of certain parameters and data (yield table values, biomass expansion factors, wood density, carbon fraction and other biophysical parameters) can be assessed from the sample standard deviation of measured sample values, using half the 95% confidence interval width divided by the estimated value, i.e.²¹,

$$U_s(\%) = \frac{\frac{1}{2}(95\%ConfidenceIntervalWidth)}{\mu} \cdot 100$$

$$= \frac{\frac{1}{2}(4\sigma)}{\mu} \cdot 100$$
(30)

where:

 U_s percentage uncertainty on the estimate of the mean parameter value, %

 μ sample mean value of the parameter

 σ sample standard deviation of the parameter

_

²¹ Box 5.2.1 in GPG LULUCF

Executive Board

AR-AM0001 / Version 02 Sectoral Scope: 14

19 May 2006

If the default parameters are used, uncertainty will be higher than if locally measured parameters are used, and can be only roughly estimated with expert judgment²².

The percentage uncertainties on quantities that are the product of several terms are then estimated using the following equation²³:

$$U_S = \sqrt{U_1^2 + U_2^2 + \dots + U_n^2}$$
 (31)

where:

percentage uncertainty of product (emission by sources or removal by sinks); $U_{\mathcal{S}}$

percentage uncertainties associated with each term of the product (parameters and

activity data), i = 1, 2, ..., n

The percentage uncertainty on quantities that are the sum or difference of several terms can be estimated using following simple error propagation equation²⁴:

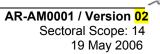
$$U_c = \frac{\sqrt{(U_{s1} \cdot C_{s1})^2 + (U_{s2} \cdot C_{s2})^2 + \dots + (U_{sn} \cdot C_{sn})^2}}{|C_{s1} + C_{s2} + \dots + C_{sn}|}$$
(32)

where:

 U_c combined percentage uncertainty, %

 U_{si} percentage uncertainty on each term of the sum or difference, %

mean value of each term of the sum or difference


This methodology can basically reduce uncertainties through:

Proper stratification of the project area into relatively homogeneous strata; (i)

(ii) In setting values for BEFs and root-shoot ratios.

²² GPG LULUCF Chapter 5.2 and Chapter 3.2²³ Equation 5.2.1 in GPG LULUCF

²⁴ Refers to equation 5.2.2 in GPG LULUCF

Section IV: Lists of variables, acronyms and references

1. List of variables used in equations:

Parameters	Unit	Descriptions
IRR, NPV cost		Indicators of investment analysis
benefit ratio, or		
unit cost of ser-		
vice		
ΔC_{BSL}		Baseline net GHG removals by sinks
ΔC_{ij}		average annual carbon stock change in living biomass of trees
$\Delta C_{G,ij}$		average annual increase in carbon due to biomass growth
ΔC_{ij} $\Delta C_{G,ij}$ $C_{L,ij}$ A_{ij} $G_{TOTAL,ij}$ CF $44/12$ $G_{w,ij}$ R_{i} $L_{v,ij}$ D_{i} $BEF_{L,i}$		average annual decrease in carbon due to biomass loss
A_{ij}	ha	Area of stratum and species
$G_{TOTAL,ij}$		annual average increment rate in total biomass per hectare for stratum
CF		carbon fraction
44/12		ration of molecular weights of CO ₂ and carbon
$G_{w,ij}$		average annual aboveground biomass increment
R_i		Root-shoot ratio for tree species
$L_{v,ij}$		average annual net increment in volume suitable for industrial processing
D_i		Species specific basic wood density
$BEF_{I,j}$		Species specific biomass expansion factor for conversion of annual net
		increment (including bark) to aboveground biomass increment
$BEF_{2,j}$		Species specific biomass expansion factor for conversion of merchantable
		volume to aboveground tree biomass
$C_{2,ij}$		total carbon stock in living biomass of trees, calculated at time 2
$C_{I,ij}$		total carbon stock in living biomass of trees, calculated at time 1
$C_{2,ij}$ $C_{1,ij}$ V_{ij} ΔC_{ACTUAL}		merchantable volume
ΔC_{ACTUAL}		actual net greenhouse gas removals by sinks
C_{ARii}		carbon stock in aboveground biomass
$C_{BB,ij}$		carbon stock in belowground biomass

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

GHG_E	increase in GHG emissions by the sources within the project boundary as a
OII OE	result of the implementation of an A/R CDM project activity
$f_i(DBH,H)$	allometric equation
$L_{fellings,ij}$	annual carbon loss due to commercial fellings
$L_{fuelwood,ij}$	annual carbon loss due to fuelwood gathering of trees
$L_{other\ losses,ij}$	annual natural losses of carbon in living trees
H_{ij}	annually extracted volume
FG_{ij}	Annual volume of harvested fuel wood
A disturbance,ij	Areas affected by disturbances
$F_{disturbance,ij}$	the fraction of the biomass in living trees for stratum i species j affected by
,,	disturbance
$B_{W,j}$	average biomass stock of living trees
$E_{FuelBurn}$	emissions from burning of fossil fuels
$E_{biomassloss}$	Decrease in carbon stock in living biomass of existing non-tree vegetation
$E_{Non\text{-}CO2,BiomassBurn}$	the increase in non-CO ₂ emission as a result of biomass burning within the
	project boundary
$N_2 O_{\mathit{direct-N_{fertilizer}}}$	The increase in N ₂ O emission as a result of direct nitrogen application within
	the project boundary
CSP_{diesel}	amount of diesel consumption
$CSP_{gasoline}$	amount of gasoline consumption
EF_{diesel}	emission factor for diesel
$EF_{gasoline}$	emission factor for gasoline
$B_{non-tree,i}$	average biomass stock on land to be planted, before the start of a proposed
	A/R CDM project activity
$CF_{non-tree}$	the carbon fraction of dry biomass in non-tree vegetation
$E_{BiomassBurn,C}$	loss of carbon due to slash and burn
$E_{BiomassBurn, N2O}$	N ₂ O emission from biomass burning in slash and burn
E _{BiomassBurn, CH4}	CH ₄ emission from biomass burning in slash and burn
B_i	average stock in living biomass before burning
$A_{burn,i}$	area of slash and burn

AR-AM0001 / Version 02 Sectoral Scope: 14 19 May 2006

UNFCCC

CE	average biomass combustion efficiency
N/C ratio	
N ₂ O direct-Nfertilizer	Emission of N ₂ O caused by nitrogen fertilization
F_{SN}	Annual amount of synthetic fertilizer nitrogen adjusted for volatilization as NH_3 and NO_X
F_{ON}	Annual amount of organic fertilizer nitrogen adjusted for volatilization as NH_3 and NO_X
EF_1	Emission Factor for emissions from N inputs
$Frac_{GASF}$	the fraction that volatilises as NH ₃ and NO _X for synthetic fertilizers
$Frac_{GASM}$	the fraction that volatilises as NH ₃ and NO _X for organic fertilizers
$N_{\mathit{SN-Fert}}$	Amount of synthetic fertilizer nitrogen applied
$N_{\mathit{SN-Fert}}$	Amount of organic fertilizer nitrogen applied
LK	total GHG emissions caused by transportation
$LK_{Vehicle,CO2}$	CO ₂ emissions caused by transportation
$LK_{Vehicle,N2O}$	N ₂ O emissions caused by transportation
LK _{Vehicle,CH4}	CH ₄ emissions caused by transportation
EF_{ij}	emission factor for vehicle type <i>i</i> with fuel type <i>j</i>
$FuelConsumption_{ij}$	consumption of fuel type <i>j</i> of vehicle type <i>i</i>
e_{ij}	average litres consumed per kilometre travelled for vehicle type i with fuel
-	type j
k_{ij}	kilometres travelled by each of vehicle type <i>i</i> with fuel type <i>j</i>
n_{ij}	number of vehicles

2. References:

All references are quoted in footnotes.